Note
This tutorial can be used interactively with Google Colab! You can also click here to run the Jupyter notebook locally.
Optimizing Operators with Auto-scheduling
Author: Lianmin Zheng, Chengfan Jia
In this tutorial, we will show how TVM’s Auto Scheduling feature can find optimal schedules without the need for writing a custom template.
Different from the template-based AutoTVM which relies on manual templates to define the search space, the auto-scheduler does not require any templates. Users only need to write the computation declaration without any schedule commands or templates. The auto-scheduler can automatically generate a large search space and find a good schedule in the space.
We use matrix multiplication as an example in this tutorial.
Note
Note that this tutorial will not run on Windows or recent versions of macOS. To
get it to run, you will need to wrap the body of this tutorial in a if
__name__ == "__main__":
block.
import numpy as np
import tvm
from tvm import te, auto_scheduler
Defining the Matrix Multiplication
To start, we define a matrix multiplication with a bias addition. Note that
this uses standard operations available in TVMs Tensor Expression language.
The major difference is the use of the register_workload
decorator at the top
of the function definition. The function should return a list of
input/output tensors. From these tensors, the auto-scheduler can get the
whole computational graph.
@auto_scheduler.register_workload # Note the auto_scheduler decorator
def matmul_add(N, L, M, dtype):
A = te.placeholder((N, L), name="A", dtype=dtype)
B = te.placeholder((L, M), name="B", dtype=dtype)
C = te.placeholder((N, M), name="C", dtype=dtype)
k = te.reduce_axis((0, L), name="k")
matmul = te.compute(
(N, M),
lambda i, j: te.sum(A[i, k] * B[k, j], axis=k),
name="matmul",
attrs={"layout_free_placeholders": [B]}, # enable automatic layout transform for tensor B
)
out = te.compute((N, M), lambda i, j: matmul[i, j] + C[i, j], name="out")
return [A, B, C, out]
Create the search task
With the function defined, we can now create the task for the auto_scheduler to search against. We specify the particular parameters for this matrix multiplication, in this case a multiplication of two square matrices of size 1024x1024. We then create a search task with N=L=M=1024 and dtype=”float32”
Improve performance with custom targets
In order for TVM to take full advantage of specific hardware platforms, you will want to manually specify your CPU capabilities. For example:
replace
llvm
below withllvm -mcpu=core-avx2
to enable AVX2replace
llvm
below withllvm -mcpu=skylake-avx512
to enable AVX-512
target = tvm.target.Target("llvm")
N = L = M = 1024
task = tvm.auto_scheduler.SearchTask(func=matmul_add, args=(N, L, M, "float32"), target=target)
# Inspect the computational graph
print("Computational DAG:")
print(task.compute_dag)
Computational DAG:
A = PLACEHOLDER [1024, 1024]
B = PLACEHOLDER [1024, 1024]
matmul(i, j) += (A[i, k]*B[k, j])
C = PLACEHOLDER [1024, 1024]
out(i, j) = (matmul[i, j] + C[i, j])
Set Parameters for Auto-Scheduler
Next, we set parameters for the auto-scheduler.
num_measure_trials
is the number of measurement trials we can use during the search. We only make 10 trials in this tutorial for a fast demonstration. In practice, 1000 is a good value for the search to converge. You can do more trials according to your time budget.In addition, we use
RecordToFile
to log measurement records into a filematmul.json
. The measurement records can be used to query the history best, resume the search, and do more analyses later.see
TuningOptions
for more parameters
log_file = "matmul.json"
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=10,
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
verbose=2,
)
Run the search
Now we get all inputs ready. Pretty simple, isn’t it? We can kick off the search and let the auto-scheduler do its magic. After some measurement trials, we can load the best schedule from the log file and apply it.
# Run auto-tuning (search)
task.tune(tune_option)
# Apply the best schedule
sch, args = task.apply_best(log_file)
Inspecting the Optimized Schedule
We can lower the schedule to see the IR after auto-scheduling. The auto-scheduler correctly performs optimizations including multi-level tiling, layout transformation, parallelization, vectorization, unrolling, and operator fusion.
Lowered TIR:
# from tvm.script import ir as I
# from tvm.script import tir as T
@I.ir_module
class Module:
@T.prim_func
def main(A: T.Buffer((1024, 1024), "float32"), B: T.Buffer((1024, 1024), "float32"), C: T.Buffer((1024, 1024), "float32"), out: T.Buffer((1024, 1024), "float32")):
T.func_attr({"from_legacy_te_schedule": T.bool(True), "tir.noalias": T.bool(True)})
auto_scheduler_layout_transform = T.allocate([1048576], "float32", "global")
auto_scheduler_layout_transform_1 = T.Buffer((1048576,), data=auto_scheduler_layout_transform)
for ax0_ax1_fused_ax2_fused in T.parallel(128):
for ax4, ax6, ax7 in T.grid(256, 4, 8):
B_1 = T.Buffer((1048576,), data=B.data)
auto_scheduler_layout_transform_1[ax0_ax1_fused_ax2_fused * 8192 + ax4 * 32 + ax6 * 8 + ax7] = B_1[ax4 * 4096 + ax6 * 1024 + ax0_ax1_fused_ax2_fused * 8 + ax7]
for i_outer_outer_j_outer_outer_fused in T.parallel(16384):
matmul = T.allocate([4], "float32x8", "global")
for i_outer_inner in range(2):
matmul_1 = T.Buffer((4,), "float32x8", data=matmul)
matmul_1[0] = T.Broadcast(T.float32(0.0), 8)
matmul_1[1] = T.Broadcast(T.float32(0.0), 8)
matmul_1[2] = T.Broadcast(T.float32(0.0), 8)
matmul_1[3] = T.Broadcast(T.float32(0.0), 8)
for k_outer, k_inner in T.grid(256, 4):
cse_var_2: T.int32 = i_outer_outer_j_outer_outer_fused % 128 * 8192 + k_outer * 32 + k_inner * 8
cse_var_1: T.int32 = i_outer_outer_j_outer_outer_fused // 128 * 8192 + i_outer_inner * 4096 + k_outer * 4 + k_inner
A_1 = T.Buffer((1048576,), data=A.data)
matmul_1[0] = matmul_1[0] + T.Broadcast(A_1[cse_var_1], 8) * auto_scheduler_layout_transform_1[cse_var_2:cse_var_2 + 8]
matmul_1[1] = matmul_1[1] + T.Broadcast(A_1[cse_var_1 + 1024], 8) * auto_scheduler_layout_transform_1[cse_var_2:cse_var_2 + 8]
matmul_1[2] = matmul_1[2] + T.Broadcast(A_1[cse_var_1 + 2048], 8) * auto_scheduler_layout_transform_1[cse_var_2:cse_var_2 + 8]
matmul_1[3] = matmul_1[3] + T.Broadcast(A_1[cse_var_1 + 3072], 8) * auto_scheduler_layout_transform_1[cse_var_2:cse_var_2 + 8]
for i_inner in range(4):
cse_var_3: T.int32 = i_outer_outer_j_outer_outer_fused // 128 * 8192 + i_outer_inner * 4096 + i_inner * 1024 + i_outer_outer_j_outer_outer_fused % 128 * 8
out_1 = T.Buffer((1048576,), data=out.data)
C_1 = T.Buffer((1048576,), data=C.data)
out_1[cse_var_3:cse_var_3 + 8] = matmul_1[i_inner] + C_1[cse_var_3:cse_var_3 + 8]
Check correctness and evaluate performance
We build the binary and check its correctness and performance.
func = tvm.build(sch, args, target)
a_np = np.random.uniform(size=(N, L)).astype(np.float32)
b_np = np.random.uniform(size=(L, M)).astype(np.float32)
c_np = np.random.uniform(size=(N, M)).astype(np.float32)
out_np = a_np.dot(b_np) + c_np
dev = tvm.cpu()
a_tvm = tvm.nd.array(a_np, device=dev)
b_tvm = tvm.nd.array(b_np, device=dev)
c_tvm = tvm.nd.array(c_np, device=dev)
out_tvm = tvm.nd.empty(out_np.shape, device=dev)
func(a_tvm, b_tvm, c_tvm, out_tvm)
# Check results
np.testing.assert_allclose(out_np, out_tvm.numpy(), rtol=1e-3)
# Evaluate execution time.
evaluator = func.time_evaluator(func.entry_name, dev, min_repeat_ms=500)
print(
"Execution time of this operator: %.3f ms"
% (np.median(evaluator(a_tvm, b_tvm, c_tvm, out_tvm).results) * 1000)
)
Execution time of this operator: 90.851 ms
Using the record file
During the search, all measurement records are logged into the record file
matmul.json`
. The measurement records can be used to re-apply search
results, resume the search, and perform other analyses.
Here is an example where we load the best schedule from a file, and print the equivalent python schedule API. This can be used for debugging and learning the behavior of the auto-scheduler.
print("Equivalent python schedule:")
print(task.print_best(log_file))
Equivalent python schedule:
matmul_i, matmul_j, matmul_k = tuple(matmul.op.axis) + tuple(matmul.op.reduce_axis)
out_i, out_j = tuple(out.op.axis) + tuple(out.op.reduce_axis)
matmul_i_o_i, matmul_i_i = s[matmul].split(matmul_i, factor=4)
matmul_i_o_o_i, matmul_i_o_i = s[matmul].split(matmul_i_o_i, factor=1)
matmul_i_o_o_o, matmul_i_o_o_i = s[matmul].split(matmul_i_o_o_i, factor=2)
matmul_j_o_i, matmul_j_i = s[matmul].split(matmul_j, factor=8)
matmul_j_o_o_i, matmul_j_o_i = s[matmul].split(matmul_j_o_i, factor=1)
matmul_j_o_o_o, matmul_j_o_o_i = s[matmul].split(matmul_j_o_o_i, factor=1)
matmul_k_o, matmul_k_i = s[matmul].split(matmul_k, factor=4)
s[matmul].reorder(matmul_i_o_o_o, matmul_j_o_o_o, matmul_i_o_o_i, matmul_j_o_o_i, matmul_k_o, matmul_i_o_i, matmul_j_o_i, matmul_k_i, matmul_i_i, matmul_j_i)
out_i_o_i, out_i_i = s[out].split(out_i, factor=4)
out_i_o_o, out_i_o_i = s[out].split(out_i_o_i, factor=2)
out_j_o_i, out_j_i = s[out].split(out_j, factor=8)
out_j_o_o, out_j_o_i = s[out].split(out_j_o_i, factor=1)
s[out].reorder(out_i_o_o, out_j_o_o, out_i_o_i, out_j_o_i, out_i_i, out_j_i)
s[matmul].compute_at(s[out], out_j_o_i)
out_i_o_o_j_o_o_fused = s[out].fuse(out_i_o_o, out_j_o_o)
s[out].parallel(out_i_o_o_j_o_o_fused)
s[matmul].pragma(matmul_i_o_o_o, "auto_unroll_max_step", 8)
s[matmul].pragma(matmul_i_o_o_o, "unroll_explicit", True)
s[matmul].vectorize(matmul_j_i)
s[out].vectorize(out_j_i)
A more complicated example is to resume the search. In this case, we need to create the search policy and cost model by ourselves and resume the status of search policy and cost model with the log file. In the example below we resume the status and do more 5 trials.
def resume_search(task, log_file):
print("Resume search:")
cost_model = auto_scheduler.XGBModel()
cost_model.update_from_file(log_file)
search_policy = auto_scheduler.SketchPolicy(
task, cost_model, init_search_callbacks=[auto_scheduler.PreloadMeasuredStates(log_file)]
)
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=5, measure_callbacks=[auto_scheduler.RecordToFile(log_file)]
)
task.tune(tune_option, search_policy=search_policy)
resume_search(task, log_file)
Resume search:
Final Notes and Summary
In this tutorial, we have shown how to use the TVM Auto-Scheduler to automatically optimize a matrix multiplication, without the need to specify a search template. It ends a series of examples that starts from the Tensor Expression (TE) language that demonstrates how TVM can optimize computational operations.
Total running time of the script: (1 minutes 32.919 seconds)