Quick Start Tutorial for Compiling Deep Learning Models

Author: Yao Wang, Truman Tian

This example shows how to build a neural network with Relay python frontend and generates a runtime library for Nvidia GPU with TVM. Notice that you need to build TVM with cuda and llvm enabled.

Overview for Supported Hardware Backend of TVM

The image below shows hardware backend currently supported by TVM:

https://github.com/dmlc/web-data/raw/main/tvm/tutorial/tvm_support_list.png

In this tutorial, we’ll choose cuda and llvm as target backends. To begin with, let’s import Relay and TVM.

import numpy as np

from tvm import relay
from tvm.relay import testing
import tvm
from tvm import te
from tvm.contrib import graph_executor
import tvm.testing

Define Neural Network in Relay

First, let’s define a neural network with relay python frontend. For simplicity, we’ll use pre-defined resnet-18 network in Relay. Parameters are initialized with Xavier initializer. Relay also supports other model formats such as MXNet, CoreML, ONNX and Tensorflow.

In this tutorial, we assume we will do inference on our device and the batch size is set to be 1. Input images are RGB color images of size 224 * 224. We can call the tvm.relay.TupleWrapper.astext() to show the network structure.

batch_size = 1
num_class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)

mod, params = relay.testing.resnet.get_workload(
    num_layers=18, batch_size=batch_size, image_shape=image_shape
)

# set show_meta_data=True if you want to show meta data
print(mod.astext(show_meta_data=False))

Out:

#[version = "0.0.5"]
def @main(%data: Tensor[(1, 3, 224, 224), float32], %bn_data_gamma: Tensor[(3), float32], %bn_data_beta: Tensor[(3), float32], %bn_data_moving_mean: Tensor[(3), float32], %bn_data_moving_var: Tensor[(3), float32], %conv0_weight: Tensor[(64, 3, 7, 7), float32], %bn0_gamma: Tensor[(64), float32], %bn0_beta: Tensor[(64), float32], %bn0_moving_mean: Tensor[(64), float32], %bn0_moving_var: Tensor[(64), float32], %stage1_unit1_bn1_gamma: Tensor[(64), float32], %stage1_unit1_bn1_beta: Tensor[(64), float32], %stage1_unit1_bn1_moving_mean: Tensor[(64), float32], %stage1_unit1_bn1_moving_var: Tensor[(64), float32], %stage1_unit1_conv1_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit1_bn2_gamma: Tensor[(64), float32], %stage1_unit1_bn2_beta: Tensor[(64), float32], %stage1_unit1_bn2_moving_mean: Tensor[(64), float32], %stage1_unit1_bn2_moving_var: Tensor[(64), float32], %stage1_unit1_conv2_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit1_sc_weight: Tensor[(64, 64, 1, 1), float32], %stage1_unit2_bn1_gamma: Tensor[(64), float32], %stage1_unit2_bn1_beta: Tensor[(64), float32], %stage1_unit2_bn1_moving_mean: Tensor[(64), float32], %stage1_unit2_bn1_moving_var: Tensor[(64), float32], %stage1_unit2_conv1_weight: Tensor[(64, 64, 3, 3), float32], %stage1_unit2_bn2_gamma: Tensor[(64), float32], %stage1_unit2_bn2_beta: Tensor[(64), float32], %stage1_unit2_bn2_moving_mean: Tensor[(64), float32], %stage1_unit2_bn2_moving_var: Tensor[(64), float32], %stage1_unit2_conv2_weight: Tensor[(64, 64, 3, 3), float32], %stage2_unit1_bn1_gamma: Tensor[(64), float32], %stage2_unit1_bn1_beta: Tensor[(64), float32], %stage2_unit1_bn1_moving_mean: Tensor[(64), float32], %stage2_unit1_bn1_moving_var: Tensor[(64), float32], %stage2_unit1_conv1_weight: Tensor[(128, 64, 3, 3), float32], %stage2_unit1_bn2_gamma: Tensor[(128), float32], %stage2_unit1_bn2_beta: Tensor[(128), float32], %stage2_unit1_bn2_moving_mean: Tensor[(128), float32], %stage2_unit1_bn2_moving_var: Tensor[(128), float32], %stage2_unit1_conv2_weight: Tensor[(128, 128, 3, 3), float32], %stage2_unit1_sc_weight: Tensor[(128, 64, 1, 1), float32], %stage2_unit2_bn1_gamma: Tensor[(128), float32], %stage2_unit2_bn1_beta: Tensor[(128), float32], %stage2_unit2_bn1_moving_mean: Tensor[(128), float32], %stage2_unit2_bn1_moving_var: Tensor[(128), float32], %stage2_unit2_conv1_weight: Tensor[(128, 128, 3, 3), float32], %stage2_unit2_bn2_gamma: Tensor[(128), float32], %stage2_unit2_bn2_beta: Tensor[(128), float32], %stage2_unit2_bn2_moving_mean: Tensor[(128), float32], %stage2_unit2_bn2_moving_var: Tensor[(128), float32], %stage2_unit2_conv2_weight: Tensor[(128, 128, 3, 3), float32], %stage3_unit1_bn1_gamma: Tensor[(128), float32], %stage3_unit1_bn1_beta: Tensor[(128), float32], %stage3_unit1_bn1_moving_mean: Tensor[(128), float32], %stage3_unit1_bn1_moving_var: Tensor[(128), float32], %stage3_unit1_conv1_weight: Tensor[(256, 128, 3, 3), float32], %stage3_unit1_bn2_gamma: Tensor[(256), float32], %stage3_unit1_bn2_beta: Tensor[(256), float32], %stage3_unit1_bn2_moving_mean: Tensor[(256), float32], %stage3_unit1_bn2_moving_var: Tensor[(256), float32], %stage3_unit1_conv2_weight: Tensor[(256, 256, 3, 3), float32], %stage3_unit1_sc_weight: Tensor[(256, 128, 1, 1), float32], %stage3_unit2_bn1_gamma: Tensor[(256), float32], %stage3_unit2_bn1_beta: Tensor[(256), float32], %stage3_unit2_bn1_moving_mean: Tensor[(256), float32], %stage3_unit2_bn1_moving_var: Tensor[(256), float32], %stage3_unit2_conv1_weight: Tensor[(256, 256, 3, 3), float32], %stage3_unit2_bn2_gamma: Tensor[(256), float32], %stage3_unit2_bn2_beta: Tensor[(256), float32], %stage3_unit2_bn2_moving_mean: Tensor[(256), float32], %stage3_unit2_bn2_moving_var: Tensor[(256), float32], %stage3_unit2_conv2_weight: Tensor[(256, 256, 3, 3), float32], %stage4_unit1_bn1_gamma: Tensor[(256), float32], %stage4_unit1_bn1_beta: Tensor[(256), float32], %stage4_unit1_bn1_moving_mean: Tensor[(256), float32], %stage4_unit1_bn1_moving_var: Tensor[(256), float32], %stage4_unit1_conv1_weight: Tensor[(512, 256, 3, 3), float32], %stage4_unit1_bn2_gamma: Tensor[(512), float32], %stage4_unit1_bn2_beta: Tensor[(512), float32], %stage4_unit1_bn2_moving_mean: Tensor[(512), float32], %stage4_unit1_bn2_moving_var: Tensor[(512), float32], %stage4_unit1_conv2_weight: Tensor[(512, 512, 3, 3), float32], %stage4_unit1_sc_weight: Tensor[(512, 256, 1, 1), float32], %stage4_unit2_bn1_gamma: Tensor[(512), float32], %stage4_unit2_bn1_beta: Tensor[(512), float32], %stage4_unit2_bn1_moving_mean: Tensor[(512), float32], %stage4_unit2_bn1_moving_var: Tensor[(512), float32], %stage4_unit2_conv1_weight: Tensor[(512, 512, 3, 3), float32], %stage4_unit2_bn2_gamma: Tensor[(512), float32], %stage4_unit2_bn2_beta: Tensor[(512), float32], %stage4_unit2_bn2_moving_mean: Tensor[(512), float32], %stage4_unit2_bn2_moving_var: Tensor[(512), float32], %stage4_unit2_conv2_weight: Tensor[(512, 512, 3, 3), float32], %bn1_gamma: Tensor[(512), float32], %bn1_beta: Tensor[(512), float32], %bn1_moving_mean: Tensor[(512), float32], %bn1_moving_var: Tensor[(512), float32], %fc1_weight: Tensor[(1000, 512), float32], %fc1_bias: Tensor[(1000), float32]) -> Tensor[(1, 1000), float32] {
  %0 = nn.batch_norm(%data, %bn_data_gamma, %bn_data_beta, %bn_data_moving_mean, %bn_data_moving_var, epsilon=2e-05f, scale=False) /* ty=(Tensor[(1, 3, 224, 224), float32], Tensor[(3), float32], Tensor[(3), float32]) */;
  %1 = %0.0;
  %2 = nn.conv2d(%1, %conv0_weight, strides=[2, 2], padding=[3, 3, 3, 3], channels=64, kernel_size=[7, 7]) /* ty=Tensor[(1, 64, 112, 112), float32] */;
  %3 = nn.batch_norm(%2, %bn0_gamma, %bn0_beta, %bn0_moving_mean, %bn0_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 112, 112), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %4 = %3.0;
  %5 = nn.relu(%4) /* ty=Tensor[(1, 64, 112, 112), float32] */;
  %6 = nn.max_pool2d(%5, pool_size=[3, 3], strides=[2, 2], padding=[1, 1, 1, 1]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %7 = nn.batch_norm(%6, %stage1_unit1_bn1_gamma, %stage1_unit1_bn1_beta, %stage1_unit1_bn1_moving_mean, %stage1_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %8 = %7.0;
  %9 = nn.relu(%8) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %10 = nn.conv2d(%9, %stage1_unit1_conv1_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %11 = nn.batch_norm(%10, %stage1_unit1_bn2_gamma, %stage1_unit1_bn2_beta, %stage1_unit1_bn2_moving_mean, %stage1_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %12 = %11.0;
  %13 = nn.relu(%12) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %14 = nn.conv2d(%13, %stage1_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %15 = nn.conv2d(%9, %stage1_unit1_sc_weight, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %16 = add(%14, %15) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %17 = nn.batch_norm(%16, %stage1_unit2_bn1_gamma, %stage1_unit2_bn1_beta, %stage1_unit2_bn1_moving_mean, %stage1_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %18 = %17.0;
  %19 = nn.relu(%18) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %20 = nn.conv2d(%19, %stage1_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %21 = nn.batch_norm(%20, %stage1_unit2_bn2_gamma, %stage1_unit2_bn2_beta, %stage1_unit2_bn2_moving_mean, %stage1_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %22 = %21.0;
  %23 = nn.relu(%22) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %24 = nn.conv2d(%23, %stage1_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %25 = add(%24, %16) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %26 = nn.batch_norm(%25, %stage2_unit1_bn1_gamma, %stage2_unit1_bn1_beta, %stage2_unit1_bn1_moving_mean, %stage2_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %27 = %26.0;
  %28 = nn.relu(%27) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %29 = nn.conv2d(%28, %stage2_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %30 = nn.batch_norm(%29, %stage2_unit1_bn2_gamma, %stage2_unit1_bn2_beta, %stage2_unit1_bn2_moving_mean, %stage2_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %31 = %30.0;
  %32 = nn.relu(%31) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %33 = nn.conv2d(%32, %stage2_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %34 = nn.conv2d(%28, %stage2_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %35 = add(%33, %34) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %36 = nn.batch_norm(%35, %stage2_unit2_bn1_gamma, %stage2_unit2_bn1_beta, %stage2_unit2_bn1_moving_mean, %stage2_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %37 = %36.0;
  %38 = nn.relu(%37) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %39 = nn.conv2d(%38, %stage2_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %40 = nn.batch_norm(%39, %stage2_unit2_bn2_gamma, %stage2_unit2_bn2_beta, %stage2_unit2_bn2_moving_mean, %stage2_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %41 = %40.0;
  %42 = nn.relu(%41) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %43 = nn.conv2d(%42, %stage2_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %44 = add(%43, %35) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %45 = nn.batch_norm(%44, %stage3_unit1_bn1_gamma, %stage3_unit1_bn1_beta, %stage3_unit1_bn1_moving_mean, %stage3_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %46 = %45.0;
  %47 = nn.relu(%46) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %48 = nn.conv2d(%47, %stage3_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %49 = nn.batch_norm(%48, %stage3_unit1_bn2_gamma, %stage3_unit1_bn2_beta, %stage3_unit1_bn2_moving_mean, %stage3_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %50 = %49.0;
  %51 = nn.relu(%50) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %52 = nn.conv2d(%51, %stage3_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %53 = nn.conv2d(%47, %stage3_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %54 = add(%52, %53) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %55 = nn.batch_norm(%54, %stage3_unit2_bn1_gamma, %stage3_unit2_bn1_beta, %stage3_unit2_bn1_moving_mean, %stage3_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %56 = %55.0;
  %57 = nn.relu(%56) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %58 = nn.conv2d(%57, %stage3_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %59 = nn.batch_norm(%58, %stage3_unit2_bn2_gamma, %stage3_unit2_bn2_beta, %stage3_unit2_bn2_moving_mean, %stage3_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %60 = %59.0;
  %61 = nn.relu(%60) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %62 = nn.conv2d(%61, %stage3_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %63 = add(%62, %54) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %64 = nn.batch_norm(%63, %stage4_unit1_bn1_gamma, %stage4_unit1_bn1_beta, %stage4_unit1_bn1_moving_mean, %stage4_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %65 = %64.0;
  %66 = nn.relu(%65) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %67 = nn.conv2d(%66, %stage4_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %68 = nn.batch_norm(%67, %stage4_unit1_bn2_gamma, %stage4_unit1_bn2_beta, %stage4_unit1_bn2_moving_mean, %stage4_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %69 = %68.0;
  %70 = nn.relu(%69) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %71 = nn.conv2d(%70, %stage4_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %72 = nn.conv2d(%66, %stage4_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %73 = add(%71, %72) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %74 = nn.batch_norm(%73, %stage4_unit2_bn1_gamma, %stage4_unit2_bn1_beta, %stage4_unit2_bn1_moving_mean, %stage4_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %75 = %74.0;
  %76 = nn.relu(%75) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %77 = nn.conv2d(%76, %stage4_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %78 = nn.batch_norm(%77, %stage4_unit2_bn2_gamma, %stage4_unit2_bn2_beta, %stage4_unit2_bn2_moving_mean, %stage4_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %79 = %78.0;
  %80 = nn.relu(%79) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %81 = nn.conv2d(%80, %stage4_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %82 = add(%81, %73) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %83 = nn.batch_norm(%82, %bn1_gamma, %bn1_beta, %bn1_moving_mean, %bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %84 = %83.0;
  %85 = nn.relu(%84) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %86 = nn.global_avg_pool2d(%85) /* ty=Tensor[(1, 512, 1, 1), float32] */;
  %87 = nn.batch_flatten(%86) /* ty=Tensor[(1, 512), float32] */;
  %88 = nn.dense(%87, %fc1_weight, units=1000) /* ty=Tensor[(1, 1000), float32] */;
  %89 = nn.bias_add(%88, %fc1_bias, axis=-1) /* ty=Tensor[(1, 1000), float32] */;
  nn.softmax(%89) /* ty=Tensor[(1, 1000), float32] */
}

Compilation

Next step is to compile the model using the Relay/TVM pipeline. Users can specify the optimization level of the compilation. Currently this value can be 0 to 3. The optimization passes include operator fusion, pre-computation, layout transformation and so on.

relay.build() returns three components: the execution graph in json format, the TVM module library of compiled functions specifically for this graph on the target hardware, and the parameter blobs of the model. During the compilation, Relay does the graph-level optimization while TVM does the tensor-level optimization, resulting in an optimized runtime module for model serving.

We’ll first compile for Nvidia GPU. Behind the scene, relay.build() first does a number of graph-level optimizations, e.g. pruning, fusing, etc., then registers the operators (i.e. the nodes of the optimized graphs) to TVM implementations to generate a tvm.module. To generate the module library, TVM will first transfer the high level IR into the lower intrinsic IR of the specified target backend, which is CUDA in this example. Then the machine code will be generated as the module library.

opt_level = 3
target = tvm.target.cuda()
with tvm.transform.PassContext(opt_level=opt_level):
    lib = relay.build(mod, target, params=params)

Out:

...1%, 0.01 MB, 50 KB/s, 0 seconds passed
...3%, 0.02 MB, 100 KB/s, 0 seconds passed
...5%, 0.02 MB, 150 KB/s, 0 seconds passed
...6%, 0.03 MB, 199 KB/s, 0 seconds passed
...8%, 0.04 MB, 249 KB/s, 0 seconds passed
...10%, 0.05 MB, 299 KB/s, 0 seconds passed
...11%, 0.05 MB, 348 KB/s, 0 seconds passed
...13%, 0.06 MB, 397 KB/s, 0 seconds passed
...15%, 0.07 MB, 447 KB/s, 0 seconds passed
...16%, 0.08 MB, 495 KB/s, 0 seconds passed
...18%, 0.09 MB, 544 KB/s, 0 seconds passed
...20%, 0.09 MB, 593 KB/s, 0 seconds passed
...21%, 0.10 MB, 642 KB/s, 0 seconds passed
...23%, 0.11 MB, 691 KB/s, 0 seconds passed
...25%, 0.12 MB, 739 KB/s, 0 seconds passed
...26%, 0.12 MB, 788 KB/s, 0 seconds passed
...28%, 0.13 MB, 836 KB/s, 0 seconds passed
...30%, 0.14 MB, 885 KB/s, 0 seconds passed
...31%, 0.15 MB, 933 KB/s, 0 seconds passed
...33%, 0.16 MB, 981 KB/s, 0 seconds passed
...35%, 0.16 MB, 1029 KB/s, 0 seconds passed
...36%, 0.17 MB, 1077 KB/s, 0 seconds passed
...38%, 0.18 MB, 1125 KB/s, 0 seconds passed
...40%, 0.19 MB, 1173 KB/s, 0 seconds passed
...41%, 0.20 MB, 1220 KB/s, 0 seconds passed
...43%, 0.20 MB, 1268 KB/s, 0 seconds passed
...45%, 0.21 MB, 1315 KB/s, 0 seconds passed
...46%, 0.22 MB, 1363 KB/s, 0 seconds passed
...48%, 0.23 MB, 1411 KB/s, 0 seconds passed
...50%, 0.23 MB, 1459 KB/s, 0 seconds passed
...51%, 0.24 MB, 1506 KB/s, 0 seconds passed
...53%, 0.25 MB, 1554 KB/s, 0 seconds passed
...55%, 0.26 MB, 1601 KB/s, 0 seconds passed
...56%, 0.27 MB, 1649 KB/s, 0 seconds passed
...58%, 0.27 MB, 1695 KB/s, 0 seconds passed
...60%, 0.28 MB, 1743 KB/s, 0 seconds passed
...61%, 0.29 MB, 1790 KB/s, 0 seconds passed
...63%, 0.30 MB, 1837 KB/s, 0 seconds passed
...65%, 0.30 MB, 1884 KB/s, 0 seconds passed
...66%, 0.31 MB, 1931 KB/s, 0 seconds passed
...68%, 0.32 MB, 1977 KB/s, 0 seconds passed
...70%, 0.33 MB, 2024 KB/s, 0 seconds passed
...71%, 0.34 MB, 2071 KB/s, 0 seconds passed
...73%, 0.34 MB, 2118 KB/s, 0 seconds passed
...75%, 0.35 MB, 2164 KB/s, 0 seconds passed
...76%, 0.36 MB, 2211 KB/s, 0 seconds passed
...78%, 0.37 MB, 2257 KB/s, 0 seconds passed
...80%, 0.38 MB, 2304 KB/s, 0 seconds passed
...81%, 0.38 MB, 2350 KB/s, 0 seconds passed
...83%, 0.39 MB, 2396 KB/s, 0 seconds passed
...85%, 0.40 MB, 2442 KB/s, 0 seconds passed
...86%, 0.41 MB, 2488 KB/s, 0 seconds passed
...88%, 0.41 MB, 2534 KB/s, 0 seconds passed
...90%, 0.42 MB, 2580 KB/s, 0 seconds passed
...91%, 0.43 MB, 2626 KB/s, 0 seconds passed
...93%, 0.44 MB, 2672 KB/s, 0 seconds passed
...95%, 0.45 MB, 2717 KB/s, 0 seconds passed
...96%, 0.45 MB, 2763 KB/s, 0 seconds passed
...98%, 0.46 MB, 2809 KB/s, 0 seconds passed
...100%, 0.47 MB, 2853 KB/s, 0 seconds passed

Run the generate library

Now we can create graph executor and run the module on Nvidia GPU.

# create random input
dev = tvm.cuda()
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
# create module
module = graph_executor.GraphModule(lib["default"](dev))
# set input and parameters
module.set_input("data", data)
# run
module.run()
# get output
out = module.get_output(0, tvm.nd.empty(out_shape)).numpy()

# Print first 10 elements of output
print(out.flatten()[0:10])

Out:

[0.00089283 0.00103331 0.0009094  0.00102275 0.00108751 0.00106737
 0.00106262 0.00095838 0.00110792 0.00113151]

Save and Load Compiled Module

We can also save the graph, lib and parameters into files and load them back in deploy environment.

# save the graph, lib and params into separate files
from tvm.contrib import utils

temp = utils.tempdir()
path_lib = temp.relpath("deploy_lib.tar")
lib.export_library(path_lib)
print(temp.listdir())

Out:

['deploy_lib.tar']
# load the module back.
loaded_lib = tvm.runtime.load_module(path_lib)
input_data = tvm.nd.array(data)

module = graph_executor.GraphModule(loaded_lib["default"](dev))
module.run(data=input_data)
out_deploy = module.get_output(0).numpy()

# Print first 10 elements of output
print(out_deploy.flatten()[0:10])

# check whether the output from deployed module is consistent with original one
tvm.testing.assert_allclose(out_deploy, out, atol=1e-5)

Out:

[0.00089283 0.00103331 0.0009094  0.00102275 0.00108751 0.00106737
 0.00106262 0.00095838 0.00110792 0.00113151]

Gallery generated by Sphinx-Gallery