Introduction to TOPI

Author: Ehsan M. Kermani

This is an introductory tutorial to TVM Operator Inventory (TOPI). TOPI provides numpy-style generic operations and schedules with higher abstractions than TVM. In this tutorial, we will see how TOPI can save us from writing boilerplates code in TVM.

from __future__ import absolute_import, print_function

import tvm
import tvm.testing
from tvm import te
from tvm import topi
import numpy as np

Basic example

Let’s revisit the sum of rows operation (equivalent to B = numpy.sum(A, axis=1)’) To compute the sum of rows of a two dimensional TVM tensor A, we should specify the symbolic operation as well as schedule as follows

n = te.var("n")
m = te.var("m")
A = te.placeholder((n, m), name="A")
k = te.reduce_axis((0, m), "k")
B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B")
s = te.create_schedule(B.op)

and to examine the IR code in human readable format, we can do

print(tvm.lower(s, [A], simple_mode=True))

Out:

primfn(A_1: handle) -> ()
  attr = {"global_symbol": "main", "tir.noalias": True}
  buffers = {A: Buffer(A_2: Pointer(float32), float32, [n: int32, m: int32], [stride: int32, stride_1: int32], type="auto")}
  buffer_map = {A_1: A} {
  attr [B: Pointer(float32)] "storage_scope" = "global";
  allocate(B, float32, [n]);
  for (i: int32, 0, n) {
    B[i] = 0f32
    for (k: int32, 0, m) {
      B[i] = ((float32*)B[i] + (float32*)A_2[((i*stride) + (k*stride_1))])
    }
  }
}

However, for such a common operation we had to define the reduce axis ourselves as well as explicit computation with te.compute. Imagine for more complicated operations how much details we need to provide. Fortunately, we can replace those two lines with simple topi.sum much like numpy.sum

C = topi.sum(A, axis=1)
ts = te.create_schedule(C.op)
print(tvm.lower(ts, [A], simple_mode=True))

Out:

primfn(A_1: handle) -> ()
  attr = {"global_symbol": "main", "tir.noalias": True}
  buffers = {A: Buffer(A_2: Pointer(float32), float32, [n: int32, m: int32], [stride: int32, stride_1: int32], type="auto")}
  buffer_map = {A_1: A} {
  attr [A_red: Pointer(float32)] "storage_scope" = "global";
  allocate(A_red, float32, [n]);
  for (ax0: int32, 0, n) {
    A_red[ax0] = 0f32
    for (k1: int32, 0, m) {
      A_red[ax0] = ((float32*)A_red[ax0] + (float32*)A_2[((ax0*stride) + (k1*stride_1))])
    }
  }
}

Numpy-style operator overloading

We can add two tensors using topi.broadcast_add that have correct (broadcastable with specific) shapes. Even shorter, TOPI provides operator overloading for such common operations. For example,

x, y = 100, 10
a = te.placeholder((x, y, y), name="a")
b = te.placeholder((y, y), name="b")
c = a + b  # same as topi.broadcast_add
d = a * b  # same as topi.broadcast_mul

Overloaded with the same syntax, TOPI handles broadcasting a primitive (int, float) to a tensor d - 3.14.

Generic schedules and fusing operations

Up to now, we have seen an example of how TOPI can save us from writing explicit computations in lower level API. But it doesn’t stop here. Still we did the scheduling as before. TOPI also provides higher level scheduling recipes depending on a given context. For example, for CUDA, we can schedule the following series of operations ending with topi.sum using only topi.generic.schedule_reduce

e = topi.elemwise_sum([c, d])
f = e / 2.0
g = topi.sum(f)
with tvm.target.cuda():
    sg = topi.cuda.schedule_reduce(g)
    print(tvm.lower(sg, [a, b], simple_mode=True))

Out:

primfn(a_1: handle, b_1: handle) -> ()
  attr = {"global_symbol": "main", "tir.noalias": True}
  buffers = {b: Buffer(b_2: Pointer(float32), float32, [10, 10], []),
             a: Buffer(a_2: Pointer(float32), float32, [100, 10, 10], [])}
  buffer_map = {a_1: a, b_1: b} {
  attr [T_divide_red: Pointer(float32)] "storage_scope" = "global";
  allocate(T_divide_red, float32, [1]);
  attr [IterVar(threadIdx.x: int32, [0:1024], "ThreadIndex", "threadIdx.x")] "thread_extent" = 1024;
  attr [T_divide_red.rf: Pointer(float32)] "storage_scope" = "local";
  allocate(T_divide_red.rf, float32, [1]);
  attr [reduce_temp0: handle] "storage_scope" = "local";
  allocate(reduce_temp0, float32, [1]) {
    T_divide_red.rf[0] = 0f32
    for (k0.k1.fused.k2.fused.outer: int32, 0, 10) {
      if @tir.likely((((((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x) < 10000) && (((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x) < 10000)) && (((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x) < 10000)), dtype=bool) {
        T_divide_red.rf[0] = ((float32*)T_divide_red.rf[0] + ((((float32*)a_2[((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x)] + (float32*)b_2[floormod(((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x), 100)]) + ((float32*)a_2[((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x)]*(float32*)b_2[floormod(((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x), 100)]))*0.5f32))
      }
    }
    attr [meta[tir.CommReducer][0]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle);
    @tir.tvm_thread_allreduce(1u32, (float32*)T_divide_red.rf[0], True, reduce_temp0, threadIdx.x, dtype=handle)
    if (threadIdx.x == 0) {
      T_divide_red[0] = (float32*)reduce_temp0[0]
    }
  }
}

As you can see, scheduled stages of computation have been accumulated and we can examine them by

print(sg.stages)

Out:

[stage(a, placeholder(a, 0x17ac5a100)), stage(b, placeholder(b, 0x17adf8a70)), stage(T_add, compute(T_add, body=[(a[ax0, ax1, ax2] + b[ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=broadcast, attrs={})), stage(T_multiply, compute(T_multiply, body=[(a[ax0, ax1, ax2]*b[ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=broadcast, attrs={})), stage(T_elemwise_sum, compute(T_elemwise_sum, body=[(T_add[ax0, ax1, ax2] + T_multiply[ax0, ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=elemwise, attrs={})), stage(T_divide, compute(T_divide, body=[(T_elemwise_sum[ax0, ax1, ax2]/2f)], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=elemwise, attrs={})), stage(T_divide_red.rf, compute(T_divide_red.rf, body=[reduce(combiner=comm_reducer(result=[(x + y)], lhs=[x], rhs=[y], identity_element=[0f]), source=[T_divide[floordiv(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10), floormod(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10), floormod((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10)]], init=[], axis=[iter_var(k0.k1.fused.k2.fused.outer, range(min=0, ext=10))], where=tir.likely((((floordiv(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10) < 100) && (floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10) < 1000)) && ((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)) < 10000))), value_index=0)], axis=[iter_var(k0.k1.fused.k2.fused.inner, range(min=0, ext=1024))], reduce_axis=[iter_var(k0.k1.fused.k2.fused.outer, range(min=0, ext=10))], tag=, attrs={})), stage(T_divide_red, compute(T_divide_red.repl, body=[reduce(combiner=comm_reducer(result=[(x + y)], lhs=[x], rhs=[y], identity_element=[0f]), source=[T_divide_red.rf[k0.k1.fused.k2.fused.inner.v]], init=[], axis=[iter_var(k0.k1.fused.k2.fused.inner.v, range(min=0, ext=1024))], where=(bool)1, value_index=0)], axis=[], reduce_axis=[iter_var(k0.k1.fused.k2.fused.inner.v, range(min=0, ext=1024))], tag=, attrs={}))]

We can test the correctness by comparing with numpy result as follows

func = tvm.build(sg, [a, b, g], "cuda")
ctx = tvm.gpu(0)
a_np = np.random.uniform(size=(x, y, y)).astype(a.dtype)
b_np = np.random.uniform(size=(y, y)).astype(b.dtype)
g_np = np.sum(np.add(a_np + b_np, a_np * b_np) / 2.0)
a_nd = tvm.nd.array(a_np, ctx)
b_nd = tvm.nd.array(b_np, ctx)
g_nd = tvm.nd.array(np.zeros(g_np.shape, dtype=g_np.dtype), ctx)
func(a_nd, b_nd, g_nd)
tvm.testing.assert_allclose(g_nd.asnumpy(), g_np, rtol=1e-5)

TOPI also provides common neural nets operations such as _softmax_ with optimized schedule

tarray = te.placeholder((512, 512), name="tarray")
softmax_topi = topi.nn.softmax(tarray)
with tvm.target.Target("cuda"):
    sst = topi.cuda.schedule_softmax(softmax_topi)
    print(tvm.lower(sst, [tarray], simple_mode=True))

Out:

primfn(tarray_1: handle) -> ()
  attr = {"global_symbol": "main", "tir.noalias": True}
  buffers = {tarray: Buffer(tarray_2: Pointer(float32), float32, [512, 512], [])}
  buffer_map = {tarray_1: tarray} {
  attr [T_softmax_norm: Pointer(float32)] "storage_scope" = "global";
  allocate(T_softmax_norm, float32x4, [65536]);
  attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 512;
  attr [normal_reduce_temp0: handle] "storage_scope" = "local";
  allocate(normal_reduce_temp0, float32, [1]);
  attr [reduce_temp0: handle] "storage_scope" = "local";
  allocate(reduce_temp0, float32, [1]);
  attr [T_softmax_exp: Pointer(float32)] "storage_scope" = "warp";
  allocate(T_softmax_exp, float32, [512]);
  attr [normal_reduce_temp0_1: handle] "storage_scope" = "local";
  allocate(normal_reduce_temp0_1, float32, [1]);
  attr [reduce_temp0_1: handle] "storage_scope" = "local";
  allocate(reduce_temp0_1, float32, [1]) {
    attr [IterVar(threadIdx.x: int32, [0:32], "ThreadIndex", "threadIdx.x")] "thread_extent" = 32 {
      normal_reduce_temp0[0] = -3.40282e+38f32
      for (k.inner: int32, 0, 16) {
        normal_reduce_temp0[0] = max((float32*)normal_reduce_temp0[0], (float32*)tarray_2[(((blockIdx.x*512) + (threadIdx.x*16)) + k.inner)])
      }
      attr [meta[tir.CommReducer][0]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle);
      @tir.tvm_thread_allreduce(1u32, (float32*)normal_reduce_temp0[0], True, reduce_temp0, threadIdx.x, dtype=handle)
      for (i1.inner.outer: int32, 0, 4) {
        T_softmax_exp[ramp(((threadIdx.x*16) + (i1.inner.outer*4)), 1, 4)] = @tir.exp(((float32x4*)tarray_2[ramp((((blockIdx.x*512) + (threadIdx.x*16)) + (i1.inner.outer*4)), 1, 4)] - broadcast((float32*)reduce_temp0[0], 4)), dtype=float32x4)
      }
    }
    attr [IterVar(threadIdx.x, [0:32], "ThreadIndex", "threadIdx.x")] "thread_extent" = 32 {
      normal_reduce_temp0_1[0] = 0f32
      for (k.inner_1: int32, 0, 16) {
        normal_reduce_temp0_1[0] = ((float32*)normal_reduce_temp0_1[0] + (float32*)T_softmax_exp[((threadIdx.x*16) + k.inner_1)])
      }
      attr [meta[tir.CommReducer][1]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle);
      @tir.tvm_thread_allreduce(1u32, (float32*)normal_reduce_temp0_1[0], True, reduce_temp0_1, threadIdx.x, dtype=handle)
      for (i1.inner.outer_1: int32, 0, 4) {
        T_softmax_norm[ramp((((blockIdx.x*512) + (threadIdx.x*16)) + (i1.inner.outer_1*4)), 1, 4)] = ((float32x4*)T_softmax_exp[ramp(((threadIdx.x*16) + (i1.inner.outer_1*4)), 1, 4)] / broadcast((float32*)reduce_temp0_1[0], 4))
      }
    }
  }
}

Fusing convolutions

We can fuse topi.nn.conv2d and topi.nn.relu together.

Note

TOPI functions are all generic functions. They have different implementations for different backends to optimize for performance. For each backend, it is necessary to call them under a target scope for both compute declaration and schedule. TVM will choose the right function to call with the target information.

data = te.placeholder((1, 3, 224, 224))
kernel = te.placeholder((10, 3, 5, 5))

with tvm.target.Target("cuda"):
    conv = topi.cuda.conv2d_nchw(data, kernel, 1, 2, 1)
    out = topi.nn.relu(conv)
    sconv = topi.cuda.schedule_conv2d_nchw([out])
    print(tvm.lower(sconv, [data, kernel], simple_mode=True))

Out:

primfn(placeholder_2: handle, placeholder_3: handle) -> ()
  attr = {"global_symbol": "main", "tir.noalias": True}
  buffers = {placeholder_1: Buffer(placeholder_4: Pointer(float32), float32, [10, 3, 5, 5], []),
             placeholder: Buffer(placeholder_5: Pointer(float32), float32, [1, 3, 224, 224], [])}
  buffer_map = {placeholder_2: placeholder, placeholder_3: placeholder_1} {
  attr [compute: Pointer(float32)] "storage_scope" = "global";
  allocate(compute, float32, [501760]);
  attr [IterVar(blockIdx.z: int32, (nullptr), "ThreadIndex", "blockIdx.z")] "thread_extent" = 5;
  attr [compute_1: Pointer(float32)] "storage_scope" = "local";
  allocate(compute_1, float32, [14]);
  attr [pad_temp.shared: Pointer(float32)] "storage_scope" = "shared";
  allocate(pad_temp.shared, float32, [112]);
  attr [placeholder.shared: Pointer(float32)] "storage_scope" = "shared";
  allocate(placeholder.shared, float32, [2]);
  attr [IterVar(blockIdx.y: int32, (nullptr), "ThreadIndex", "blockIdx.y")] "thread_extent" = 224;
  attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 2;
  attr [IterVar(threadIdx.z: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
  attr [IterVar(threadIdx.y: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
  attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {
    compute_1[0] = 0f32
    compute_1[2] = 0f32
    compute_1[4] = 0f32
    compute_1[6] = 0f32
    compute_1[8] = 0f32
    compute_1[10] = 0f32
    compute_1[12] = 0f32
    compute_1[1] = 0f32
    compute_1[3] = 0f32
    compute_1[5] = 0f32
    compute_1[7] = 0f32
    compute_1[9] = 0f32
    compute_1[11] = 0f32
    compute_1[13] = 0f32
    for (rc.outer: int32, 0, 3) {
      for (ry.outer: int32, 0, 5) {
        attr [IterVar(threadIdx.z_1: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_1: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_1: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {
          pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (2 <= ((blockIdx.x*112) + (threadIdx.x_1*7)))), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 450)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (1 <= ((blockIdx.x*112) + (threadIdx.x_1*7)))), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 449)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)
        }
        attr [IterVar(threadIdx.z_2: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_2: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_2: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;
        if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {
          placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5))]
        }
        compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))
        compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))
        compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))
        compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))
        compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))
        compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))
        compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))
        compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))
        compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))
        compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))
        compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))
        compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))
        compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))
        compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))
        attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {
          pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (1 <= ((blockIdx.x*112) + (threadIdx.x_1*7)))), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 449)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)
        }
        attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;
        if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {
          placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 1)]
        }
        compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))
        compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))
        compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))
        compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))
        compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))
        compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))
        compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))
        compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))
        compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))
        compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))
        compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))
        compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))
        compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))
        compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))
        attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {
          pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32)
        }
        attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;
        if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {
          placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 2)]
        }
        compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))
        compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))
        compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))
        compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))
        compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))
        compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))
        compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))
        compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))
        compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))
        compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))
        compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))
        compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))
        compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))
        compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))
        attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {
          pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*112) + (threadIdx.x_1*7)) < 217)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 441)], 0f32, dtype=float32)
        }
        attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;
        if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {
          placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 3)]
        }
        compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))
        compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))
        compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))
        compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))
        compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))
        compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))
        compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))
        compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))
        compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))
        compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))
        compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))
        compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))
        compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))
        compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))
        attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {
          pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*112) + (threadIdx.x_1*7)) < 217)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 441)], 0f32, dtype=float32)
          pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*112) + (threadIdx.x_1*7)) < 216)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 440)], 0f32, dtype=float32)
        }
        attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;
        attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;
        attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;
        if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {
          placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 4)]
        }
        compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))
        compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))
        compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))
        compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))
        compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))
        compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))
        compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))
        compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))
        compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))
        compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))
        compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))
        compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))
        compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))
        compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))
      }
    }
    compute[((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x)] = max((float32*)compute_1[0], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 16)] = max((float32*)compute_1[2], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 32)] = max((float32*)compute_1[4], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 48)] = max((float32*)compute_1[6], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 64)] = max((float32*)compute_1[8], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 80)] = max((float32*)compute_1[10], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 96)] = max((float32*)compute_1[12], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50176)] = max((float32*)compute_1[1], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50192)] = max((float32*)compute_1[3], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50208)] = max((float32*)compute_1[5], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50224)] = max((float32*)compute_1[7], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50240)] = max((float32*)compute_1[9], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50256)] = max((float32*)compute_1[11], 0f32)
    compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50272)] = max((float32*)compute_1[13], 0f32)
  }
}

Summary

In this tutorial, we have seen

  • How to use TOPI API for common operations with numpy-style operators.

  • How TOPI facilitates generic schedules and operator fusion for a context, to generate optimized kernel codes.

Gallery generated by Sphinx-Gallery