24 #ifndef TVM_RELAY_ATTRS_NN_H_ 25 #define TVM_RELAY_ATTRS_NN_H_ 46 TVM_ATTR_FIELD(axis).describe(
"The axis to add the bias").set_default(1);
68 .describe(
"Specifies the stride of the convolution.");
72 "If padding is non-zero, then the input is implicitly zero-padded" 73 "on both sides for padding number of points");
78 .describe(
"Specifies the dilation rate to use for dilated convolution.");
80 "Currently unused but may be added in the future.");
83 "The number of output channels in the convolution." 84 " If it is not set, inferred by shape of the weight.")
85 .set_default(NullValue<IndexExpr>());
87 .describe(
"Specifies the dimensions of the convolution window.")
92 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc." 93 "'N', 'C', 'W' stands for batch, channel, and width" 94 "dimensions respectively. Convolution is applied on the 'W'" 99 "Dimension ordering of weight. Can be 'OIW', or 'WIO', etc." 100 "'O', 'I', 'W' stands for num_filter, input_channel, and width" 101 "dimensions respectively.");
105 "Dimension ordering of output. Can be 'NCW', 'NWC', etc." 106 "'N', 'C', 'W' stands for batch, channel, and width" 107 "dimensions respectively. Default to be same as input layout.");
112 .describe(
"Output data type, set to explicit type under mixed precision setting");
134 .describe(
"Specifies the strides of the convolution.");
138 "If padding is non-zero, then the input is implicitly zero-padded" 139 "Padding support both symmetric and asymmetric as" 140 "one int : same padding used on all sides" 141 "two int : bottom, right will use same padding as top, left" 142 "four int : padding width in the order of (top, left, bottom, right)");
145 .describe(
"Specifies the dilation rate to use for dilated convolution.");
147 "Controls the connections between inputs and outputs." 148 "At groups=1, all inputs are convolved to all outputs." 149 "At groups=2, the operation becomes equivalent to having two convolution" 150 "layers side by side, each seeing half the input channels, and producing" 151 "half the output channels, and both subsequently concatenated.");
154 "The number of output channels in the convolution." 155 " If it is not set, inferred by shape of the weight.")
156 .set_default(NullValue<IndexExpr>());
158 .describe(
"Specifies the dimensions of the convolution window.")
163 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 164 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 165 "dimensions respectively. Convolution is applied on the 'H' and" 170 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." 171 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 172 "dimensions respectively.");
176 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 177 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 178 "dimensions respectively. Default to be same as input layout.");
183 .describe(
"Output data type, set to explicit type under mixed precision setting");
192 "relay.attrs.ConvWinogradWeightTransformAttrs") {
194 "Tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
204 TVM_ATTR_FIELD(tile_rows).describe(
"Tile rows of the weight transformation for ConvGemm.");
205 TVM_ATTR_FIELD(tile_cols).describe(
"Tile columns of the weight transformation for ConvGemm.");
227 "The tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
230 .describe(
"Specifies the strides of the convolution.");
234 "If padding is non-zero, then the input is implicitly zero-padded" 235 "Padding support both symmetric and asymmetric as" 236 "one int : same padding used on all sides" 237 "two int : bottom, right will use same padding as top, left" 238 "four int : padding width in the order of (top, left, bottom, right)");
241 .describe(
"Specifies the dilation rate to use for dilated convolution.");
243 "Controls the connections between inputs and outputs." 244 "At groups=1, all inputs are convolved to all outputs." 245 "At groups=2, the operation becomes equivalent to having two convolution" 246 "layers side by side, each seeing half the input channels, and producing" 247 "half the output channels, and both subsequently concatenated.");
250 "The number of output channels in the convolution." 251 " If it is not set, inferred by shape of the weight.")
252 .set_default(NullValue<IndexExpr>());
254 .describe(
"Specifies the dimensions of the convolution window.")
259 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 260 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 261 "dimensions respectively. Convolution is applied on the 'H' and" 266 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." 267 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 268 "dimensions respectively.");
272 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 273 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 274 "dimensions respectively. Default to be same as input layout.");
279 .describe(
"Output data type, set to explicit type under mixed precision setting");
285 :
public tvm::AttrsNode<Conv2DWinogradNNPACKWeightTransformAttrs> {
290 "relay.attrs.Conv2DWinogradNNPACKWeightTransformAttrs") {
293 "The convolution algorithm for Winograd NNPACK. " 294 "E.g. tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8 for WT_8x8, " 295 "tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8_FP16 for WT_8x8_FP16");
298 .describe(
"Output data type, set to explicit type under mixed precision setting");
320 .describe(
"Specifies the strides of the convolution.");
324 "If padding is non-zero, then the input is implicitly zero-padded" 325 "Padding support both symmetric and asymmetric as" 326 "one int : same padding used on all sides" 327 "three int : back, bottom, right will use same padding as front, top, left" 328 "six int : padding width in the order of (front, top, left, back, bottom," 332 .describe(
"Specifies the dilation rate to use for dilated convolution.");
334 "Controls the connections between inputs and outputs." 335 "At groups=1, all inputs are convolved to all outputs." 336 "At groups=2, the operation becomes equivalent to having two convolution" 337 "layers side by side, each seeing half the input channels, and producing" 338 "half the output channels, and both subsequently concatenated.");
341 "The number of output channels in the convolution." 342 " If it is not set, inferred by shape of the weight.")
343 .set_default(NullValue<IndexExpr>());
345 .describe(
"Specifies the dimensions of the convolution window.")
348 .set_default(
"NCDHW")
350 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 351 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 352 "dimensions respectively. Convolution is applied on the 'D', 'H' and" 355 .set_default(
"OIDHW")
357 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc." 358 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height," 359 "and width dimensions respectively.");
363 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc." 364 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 365 "dimensions respectively. Default to be same as input layout.");
370 .describe(
"Output data type, set to explicit type under mixed precision setting");
390 .set_default(NullValue<IndexExpr>())
392 "The dimensionality of the output space" 393 "i.e. the number of output channels in the convolution.");
395 .describe(
"The dimensions of the convolution window.")
399 .describe(
"The strides of the convolution.");
403 "Zero-padding added to one side of the output." 404 "Padding support both symmetric and asymmetric as" 405 "one int : same padding used on all sides" 406 "three int : front, bottom, right will use same padding as back, top, left" 407 "six int : padding width in the order of (front, top, left, back, bottom, right)");
411 "If padding is non-zero, then the input is implicitly zero-padded" 412 "Padding support both symmetric and asymmetric as" 413 "one int : same padding used on all sides" 414 "three int : front, bottom, right will use same padding as back, top, left" 415 "six int : padding width in the order of (front, top, left, back, bottom, right)");
418 .describe(
"Specifies the dilation rate to use for dilated convolution.");
420 "Controls the connections between inputs and outputs." 421 "At groups=1, all inputs are convolved to all outputs." 422 "At groups=2, the operation becomes equivalent to having two convolution" 423 "layers side by side, each seeing half the input channels, and producing" 424 "half the output channels, and both subsequently concatenated.");
426 .set_default(
"NCDHW")
428 "Dimension ordering of data. Can be 'NCDHW', 'NDHWC', etc." 429 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 430 "dimensions respectively. Convolution is applied on the 'D', 'H' and" 433 .set_default(
"OIDHW")
435 "Dimension ordering of data and weight. Can be 'OIDHW', 'OIDHW16o16i', etc." 436 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height, and width" 437 "dimensions respectively.");
441 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc." 442 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 443 "dimensions respectively. Default to be same as input layout.");
446 .describe(
"Output data type, set to explicit type under mixed precision setting");
466 "The tile size of winograd. E.g. 2 for F(2x2x2, 3x3x3) and 4 for F(4x4x4, 3x3x3)");
469 .describe(
"Specifies the strides of the convolution.");
473 "If padding is non-zero, then the input is implicitly zero-padded" 474 "Padding support both symmetric and asymmetric as" 475 "one int : same padding used on all sides" 476 "three int : back, bottom, right will use same padding as front, top, left" 477 "six int : padding width in the order of (front, top, left, back, bottom," 481 .describe(
"Specifies the dilation rate to use for dilated convolution.");
483 "Controls the connections between inputs and outputs." 484 "At groups=1, all inputs are convolved to all outputs." 485 "At groups=2, the operation becomes equivalent to having two convolution" 486 "layers side by side, each seeing half the input channels, and producing" 487 "half the output channels, and both subsequently concatenated.");
490 "The number of output channels in the convolution." 491 " If it is not set, inferred by shape of the weight.")
492 .set_default(NullValue<IndexExpr>());
494 .describe(
"Specifies the dimensions of the convolution window.")
497 .set_default(
"NCDHW")
499 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 500 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 501 "dimensions respectively. Convolution is applied on the 'D', 'H' and" 504 .set_default(
"OIDHW")
506 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc." 507 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height," 508 "and width dimensions respectively.");
512 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc." 513 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 514 "dimensions respectively. Default to be same as input layout.");
519 .describe(
"Output data type, set to explicit type under mixed precision setting");
528 TVM_ATTR_FIELD(axis).set_default(-1).describe(
"The axis to sum over when computing softmax.");
548 .set_default(NullValue<IndexExpr>())
550 "The dimensionality of the output space" 551 "i.e. the number of output channels in the convolution.");
553 .describe(
"The dimensions of the convolution window.")
557 .describe(
"The strides of the convolution.");
561 "Zero-padding added to one side of the output." 562 "Padding support both symmetric and asymmetric as" 563 "one int : same padding used on all sides" 564 "two int : bottom, right will use same padding as top, left" 565 "four int : padding width in the order of (top, left, bottom, right)");
569 "If padding is non-zero, then the input is implicitly zero-padded" 570 "Padding support both symmetric and asymmetric as" 571 "one int : same padding used on all sides" 572 "two int : bottom, right will use same padding as top, left" 573 "four int : padding width in the order of (top, left, bottom, right)");
576 .describe(
"Specifies the dilation rate to use for dilated convolution.");
578 "Controls the connections between inputs and outputs." 579 "At groups=1, all inputs are convolved to all outputs." 580 "At groups=2, the operation becomes equivalent to having two convolution" 581 "layers side by side, each seeing half the input channels, and producing" 582 "half the output channels, and both subsequently concatenated.");
586 "Dimension ordering of data. Can be 'NCHW', 'NHWC', etc." 587 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 588 "dimensions respectively. Convolution is applied on the 'H' and" 593 "Dimension ordering of data and weight. Can be 'OIHW', 'OIHW16o16i', etc." 594 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 595 "dimensions respectively.");
599 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 600 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 601 "dimensions respectively. Default to be same as input layout.");
604 .describe(
"Output data type, set to explicit type under mixed precision setting");
616 .describe(
"Dilation stride on each dimension, 1 means no dilation.");
617 TVM_ATTR_FIELD(dilation_value).set_default(0.0).describe(
"Value used to dilate the input.");
637 .set_default(NullValue<IndexExpr>())
639 "The dimensionality of the output space" 640 "i.e. the number of output channels in the convolution.");
642 .describe(
"The dimensions of the convolution window.")
646 .describe(
"The strides of the convolution.");
649 .describe(
"Zero-padding added to one side of the output.");
653 "Symmetric or asymmetric padding." 654 "Single value: the input is implicitly zero-padded on both sides." 655 "Two values: padding[0] is used for left input padding, " 656 "padding[1] is used for right input padding,");
659 .describe(
"Specifies the dilation rate to use for dilated convolution.");
661 "Controls the connections between inputs and outputs." 662 "At groups=1, all inputs are convolved to all outputs." 663 "At groups=2, the operation becomes equivalent to having two convolution" 664 "layers side by side, each seeing half the input channels, and producing" 665 "half the output channels, and both subsequently concatenated.");
669 "Dimension ordering of data. Can be 'NCW', 'NWC', etc." 670 "'N', 'C', 'W' stands for batch, channel, and width" 671 "dimensions respectively. Convolution is applied on the" 676 "Dimension ordering of data and weight. Can be 'OIW', 'OIW16o16i', etc." 677 "'O', 'I', 'W' stands for num_filter, input_channel, and width" 678 "dimensions respectively.");
682 "Dimension ordering of output. Can be 'NCW', 'NWC', etc." 683 "'N', 'C', 'W' stands for batch, channel, and width" 684 "dimensions respectively. Default to be same as input layout.");
687 .describe(
"Output data type, set to explicit type under mixed precision setting");
702 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
705 .describe(
"Specifies the strides of the convolution.");
708 .describe(
"Specifies the dilation of the convolution.");
712 "If padding is non-zero, then the input is implicitly zero-padded" 713 "Padding support both symmetric and asymmetric as" 714 "one int : same padding used on all sides" 715 "two int : bottom, right will use same padding as top, left" 716 "four int : padding width in the order of (top, left, bottom, right)");
718 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 719 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 720 "dimensions respectively. Pooling is applied on the 'H' and" 725 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 726 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 727 "dimensions respectively. Pooling is applied on the 'H' and" 730 "When true, will use ceil instead of floor to compute the output shape.");
746 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
749 .describe(
"Specifies the strides of the convolution.");
752 .describe(
"Specifies the dilation of the convolution.");
756 "If padding is non-zero, then the input is implicitly zero-padded" 757 "Padding support both symmetric and asymmetric as" 758 "one int : same padding used on all sides" 759 "two int : bottom, right will use same padding as top, left" 760 "four int : padding width in the order of (top, left, bottom, right)");
762 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 763 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 764 "dimensions respectively. Pooling is applied on the 'H' and" 769 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 770 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 771 "dimensions respectively. Pooling is applied on the 'H' and" 774 "When true, will use ceil instead of floor to compute the output shape.");
777 .describe(
"When true, will include padding to compute the average");
788 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 789 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 790 "dimensions respectively. Pooling is applied on the 'H' and" 795 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 796 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 797 "dimensions respectively. Pooling is applied on the 'H' and" 811 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc." 812 "'N', 'C', 'W' stands for batch, channel, and width" 813 "dimensions respectively. Pooling is applied on the" 818 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc." 819 "'N', 'C', 'W' stands for batch, channel, and width" 820 "dimensions respectively. Pooling is applied on the" 834 .describe(
"Output height and width.");
836 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 837 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 838 "dimensions respectively. Pooling is applied on the 'H' and" 843 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 844 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 845 "dimensions respectively. Pooling is applied on the 'H' and" 859 .describe(
"Output depth, height and width.");
861 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 862 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 863 "dimensions respectively. Pooling is applied on 'D', 'H' and" 868 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc." 869 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 870 "dimensions respectively. Pooling is applied on 'D', 'H' and" 886 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
889 .describe(
"Specifies the strides of the convolution.");
892 .describe(
"Specifies the dilation of the convolution.");
896 "If padding is non-zero, then the input is implicitly zero-padded" 897 "Padding supports both symmetric and asymmetric as" 898 "one int : same padding used on each side" 899 "two int : indicates left padding, right padding");
901 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc." 902 "'N', 'C', 'W' stands for batch, channel, and width" 903 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
907 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc." 908 "'N', 'C', 'W' stands for batch, channel, and width" 909 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
911 "When true, will use ceil instead of floor to compute the output shape.");
927 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
930 .describe(
"Specifies the strides of the convolution.");
933 .describe(
"Specifies the dilation of the convolution.");
937 "If padding is non-zero, then the input is implicitly zero-padded" 938 "Padding supports both symmetric and asymmetric as" 939 "one int : same padding used on each side" 940 "two int : indicates left padding, right padding");
942 "Dimension ordering of input data. Can be 'NCW', 'NHC', etc." 943 "'N', 'C', 'W' stands for batch, channel, and width" 944 "dimensions respectively. Pooling is applied on the 'W' dimension.");
948 "Dimension ordering of output data. Can be 'NCW', 'NHC', etc." 949 "'N', 'C', 'W' stands for batch, channel, and width" 950 "dimensions respectively. Pooling is applied on the 'W' dimension.");
952 "When true, will use ceil instead of floor to compute the output shape.");
955 .describe(
"When true, will include padding to compute the average");
970 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
973 .describe(
"Specifies the strides of the convolution.");
976 .describe(
"Specifies the dilation of the convolution.");
980 "If padding is non-zero, then the input is implicitly zero-padded" 981 "Padding support both symmetric and asymmetric as" 982 "one int : same padding used on all sides" 983 "three int : back, bottom, right will use same padding as front, top, left" 984 "six int : padding width in the order of (front, top, left, back, bottom, right)");
986 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 987 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 988 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 993 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc." 994 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 995 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 998 "When true, will use ceil instead of floor to compute the output shape.");
1014 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
1017 .describe(
"Specifies the strides of the convolution.");
1020 .describe(
"Specifies the dilation of the convolution.");
1024 "If padding is non-zero, then the input is implicitly zero-padded" 1025 "Padding support both symmetric and asymmetric as" 1026 "one int : same padding used on all sides" 1027 "three int : back, bottom, right will use same padding as front, top, left" 1028 "six int : padding width in the order of (front, top, left, back, bottom, right)");
1030 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 1031 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 1032 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 1037 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc." 1038 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 1039 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 1042 "When true, will use ceil instead of floor to compute the output shape.");
1045 .describe(
"When true, will include padding to compute the average");
1059 TVM_ATTR_FIELD(units).describe(
"Number of hidden units of the dense transformation.");
1064 .describe(
"Output data type, set to explicit type under mixed precision setting");
1068 .describe(
"Whether the first input tensor is in transposed format.");
1072 .describe(
"Whether the second input tensor is in transposed format.");
1084 TVM_ATTR_FIELD(units).describe(
"Number of hidden units of the dense transformation.");
1089 .describe(
"Output data type, set to explicit type under mixed precision setting");
1100 TVM_ATTR_FIELD(units).describe(
"Number of hidden units of the dense transformation.");
1105 .describe(
"Output data type, set to explicit type under mixed precision setting");
1108 .describe(
"Dimension ordering of weight. Packed layouts, such as NC8n, are possible.");
1124 .describe(
"Output data type, set to explicit type under mixed precision setting");
1128 .describe(
"Whether the first input tensor is in transposed format.");
1132 .describe(
"Whether the second input tensor is in transposed format.");
1144 "Indicate whether sparse matrix is multiplied on the right or the left. If true, then " 1145 "the operation is S * D^T (D dense, S sparse). If false, the operation is D * S^T");
1161 "Dimension ordering of input data. Can be 'NCHW', 'NHWC'" 1162 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1163 "dimensions respectively.");
1166 .describe(
"Kernel size for SparseConv2D, 1x1 or 3x3. ");
1188 TVM_ATTR_FIELD(scale_h).describe(
"The upsampling factor for height");
1189 TVM_ATTR_FIELD(scale_w).describe(
"The upsampling factor for width");
1191 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1192 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1193 "dimensions respectively. Upsampling is applied on the 'H' and" 1196 .set_default(
"nearest_neighbor")
1198 "Specify the mode to use for scaling." 1199 "nearest_neighbor - Nearest Neighbor" 1200 "bilinear - Bilinear Interpolation" 1201 "bicubic - Bicubic Interpolation");
1204 .describe(
"Should be true to preserve the values at the corner pixels");
1218 TVM_ATTR_FIELD(scale_d).describe(
"The upsampling factor for depth");
1219 TVM_ATTR_FIELD(scale_h).describe(
"The upsampling factor for height");
1220 TVM_ATTR_FIELD(scale_w).describe(
"The upsampling factor for width");
1222 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 1223 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 1224 "dimensions respectively. Upsampling is applied on the 'D', 'H' and" 1227 .set_default(
"nearest_neighbor")
1229 "Specify the mode to use for scaling." 1230 "nearest_neighbor - Nearest Neighbor" 1231 "trilinear - Trilinear Interpolation");
1233 .set_default(
"half_pixel")
1235 "Describes how to transform the coordinate in the resized tensor" 1236 "to the coordinate in the original tensor." 1237 "Refer to the ONNX Resize operator specification for details" 1238 "Available options are half_pixel, align_corners and asymmetric");
1249 "Number of values padded to the edges of each axis, " 1250 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1252 .set_default(
"constant")
1254 "Padding type to use. \"constant\" pads with constant_value, " 1255 "\"edge\" pads using the edge values of the input array, " 1256 "\"reflect\" pads by reflecting values with respect to the edges.");
1267 .set_default(
"SYMMETRIC")
1268 .describe(
"Specifies how mirroring should be performed.");
1270 "Number of values padded to the edges of each axis, " 1271 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1280 TVM_ATTR_FIELD(alpha).set_lower_bound(0.0).set_default(0.25).describe(
1281 "Slope coefficient for the negative half axis.");
1291 "Specify which shape axis the channel is specified.");
1300 .describe(
"Fraction of the input that gets dropped out during training time")
1313 TVM_ATTR_FIELD(axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1315 .describe(
"Small float added to variance to avoid dividing by zero")
1318 .describe(
"If True, add offset of beta to normalized tensor. If False, beta is ignored")
1322 "If True, multiply by gamma. If False, gamma is not used. " 1323 "When the next layer is piecewise linear (also, e.g., nn.relu), " 1324 "this can be disabled since the scaling will be done by the next layer.")
1337 TVM_ATTR_FIELD(axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1339 .describe(
"Small float added to variance to avoid dividing by zero")
1342 "If true, add offset of beta to normalized tensor; " 1343 "otherwise, beta is ignored.");
1345 "If true, multiply by gamma; otherwise, gamma is ignored.");
1357 TVM_ATTR_FIELD(axis).set_default(-1).describe(
"Specify which shape axis denotes the channel.");
1359 "Small float added to variance to avoid dividing by zero");
1361 "If true, add offset of beta to normalized tensor; " 1362 "otherwise, beta is ignored.");
1364 "If true, multiply by gamma; otherwise, gamma is ignored.");
1379 .describe(
"Specify number of groups to separate the channels into.");
1380 TVM_ATTR_FIELD(axis).set_default(1).describe(
"Specify which shape axis denotes the channel.");
1382 "Small float added to variance to avoid dividing by zero");
1384 "If true, add offset of beta to normalized tensor; " 1385 "otherwise, beta is ignored.");
1387 "If true, multiply by gamma; otherwise, gamma is ignored.");
1401 "The size of the local region to be considered for normalization.");
1402 TVM_ATTR_FIELD(axis).set_default(1).describe(
"Axis of input data layout channel.");
1403 TVM_ATTR_FIELD(bias).set_default(2).describe(
"The offset parameter to avoid division by 0.");
1404 TVM_ATTR_FIELD(alpha).set_default(0.0001).describe(
"The scaling parameter.");
1405 TVM_ATTR_FIELD(beta).set_default(0.75).describe(
"The exponent parameter.");
1415 TVM_ATTR_FIELD(eps).describe(
"A lower bound value for the norm, to avoid division by 0.");
1416 TVM_ATTR_FIELD(axis).describe(
"Axis over the normalization applied.");
1437 .describe(
"Specifies the strides of the convolution.");
1441 "If padding is non-zero, then the input is implicitly zero-padded" 1442 "Padding support both symmetric and asymmetric as" 1443 "one int : same padding used on all sides" 1444 "two int : bottom, right will use same padding as top, left" 1445 "four int : padding width in the order of (top, left, bottom, right)");
1448 .describe(
"Specifies the dilation rate to use for dilated convolution.");
1452 "Controls the connections between inputs and offsets." 1453 "Input channels are partitioned into multiple deformable groups. Offsets" 1454 "are shared across input channels in the same deformable group.");
1456 "Controls the connections between inputs and outputs." 1457 "At groups=1, all inputs are convolved to all outputs." 1458 "At groups=2, the operation becomes equivalent to having two convolution" 1459 "layers side by side, each seeing half the input channels, and producing" 1460 "half the output channels, and both subsequently concatenated.");
1463 "The number of output channels in the convolution." 1464 " If it is not set, inferred by shape of the weight.")
1465 .set_default(NullValue<IndexExpr>());
1467 .describe(
"Specifies the dimensions of the convolution window.")
1470 .set_default(
"NCHW")
1472 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1473 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1474 "dimensions respectively. Convolution is applied on the 'H' and" 1477 .set_default(
"OIHW")
1479 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." 1480 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 1481 "dimensions respectively.");
1485 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 1486 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1487 "dimensions respectively. Default to be same as input layout.");
1492 .describe(
"Output data type, set to explicit type under mixed precision setting");
1504 .describe(
"The size of subpixel blocks to compose or decompose.")
1507 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1508 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1509 "dimensions respectively.");
1511 "Indicates order in which channels are accessed. Must be one of" 1528 .describe(
"Kernel size for correlation, must be an odd number.")
1530 TVM_ATTR_FIELD(max_displacement).describe(
"Max displacement of Correlation.").set_default(1);
1531 TVM_ATTR_FIELD(stride1).describe(
"Stride for data1.").set_default(1);
1532 TVM_ATTR_FIELD(stride2).describe(
"Stride for data2.").set_default(1);
1534 .describe(
"Padding for data1 and data2.")
1537 .describe(
"Operation type is either multiplication or substraction.")
1540 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1541 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1542 "dimensions respectively.");
1555 .describe(
"1-D containing block size for each spatial dimension.");
1556 TVM_ATTR_FIELD(paddings).describe(
"2-D containing paddings for each spatial dimension.");
1557 TVM_ATTR_FIELD(pad_value).set_default(0.0).describe(
"The value used for padding.");
1569 .describe(
"1-D containing block size for each spatial dimension.");
1570 TVM_ATTR_FIELD(crops).describe(
"2-D containing amount to crop from spatial dimension.");
1581 "The reduction method to apply to the output. Can be" 1582 "'none', 'mean' or 'sum'.");
1583 TVM_ATTR_FIELD(ignore_index).describe(
"The target value to ignore.");
1589 #endif // TVM_RELAY_ATTRS_NN_H_ std::string data_layout
Definition: nn.h:630
Array< IndexExpr > dilation
Definition: nn.h:306
std::string layout
Definition: nn.h:1213
Attributes for max pool operator.
Definition: nn.h:692
TVM_DECLARE_ATTRS(NLLLossAttrs, "relay.attrs.NLLLossAttrs")
Definition: nn.h:1579
tvm::String out_layout
Definition: nn.h:882
Attributes for prelu operator.
Definition: nn.h:1286
Array< IndexExpr > padding
Definition: nn.h:738
std::string kernel_layout
Definition: nn.h:631
int axis
Definition: nn.h:43
Array< IndexExpr > kernel_size
Definition: nn.h:624
TVM_DECLARE_ATTRS(Conv3DWinogradAttrs, "relay.attrs.Conv3DWinogradAttrs")
Definition: nn.h:464
IndexExpr channels
Definition: nn.h:623
TVM_DECLARE_ATTRS(MaxPool1DAttrs, "relay.attrs.MaxPool1DAttrs")
Definition: nn.h:885
int size
Definition: nn.h:1393
tvm::String data_layout
Definition: nn.h:310
Attributes for FIFO buffer operator.
Definition: nn.h:1171
tvm::String out_layout
Definition: nn.h:126
Attributes used for the MirrorPadding operator.
Definition: nn.h:1261
Array< Integer > block_shape
Definition: nn.h:1563
TVM_DECLARE_ATTRS(L2NormalizeAttrs, "relay.attrs.L2NormalizeAttrs")
Definition: nn.h:1414
TVM_DECLARE_ATTRS(MaxPool2DAttrs, "relay.attrs.MaxPool2DAttrs")
Definition: nn.h:701
TVM_DECLARE_ATTRS(LayerNormAttrs, "relay.attrs.LayerNormAttrs")
Definition: nn.h:1356
TVM_DECLARE_ATTRS(BatchMatmulAttrs, "relay.attrs.BatchMatmulAttrs")
Definition: nn.h:1120
tvm::String data_layout
Definition: nn.h:124
bool count_include_pad
Definition: nn.h:1011
IndexExpr units
Definition: nn.h:1051
int num_groups
Definition: nn.h:1370
TVM_DECLARE_ATTRS(AdaptivePool3DAttrs, "relay.attrs.AdaptivePool3DAttrs")
Definition: nn.h:856
Array< IndexExpr > padding
Definition: nn.h:537
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1056
Array< IndexExpr > strides
Definition: nn.h:453
Attributes used in dilate operator.
Definition: nn.h:609
Array< IndexExpr > dilation
Definition: nn.h:455
Attributes for dense_pack operator.
Definition: nn.h:1094
double alpha
Definition: nn.h:1396
Array< IndexExpr > strides
Definition: nn.h:1005
int groups
Definition: nn.h:55
DataType out_dtype
Definition: nn.h:223
TVM_DECLARE_ATTRS(FIFOBufferAttrs, "relay.attrs.FIFOBufferAttrs")
Definition: nn.h:1174
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
int groups
Definition: nn.h:629
IndexExpr channels
Definition: nn.h:216
Add a 1D Tensor to an axis of a data.
Definition: nn.h:42
Array< IndexExpr > output_padding
Definition: nn.h:538
TVM_DECLARE_ATTRS(LRNAttrs, "relay.attrs.LRNAttrs")
Definition: nn.h:1399
Attributes for 3d adaptive pool operator.
Definition: nn.h:851
IndexExpr channels
Definition: nn.h:376
tvm::String layout
Definition: nn.h:740
Array< Array< IndexExpr > > paddings
Definition: nn.h:1549
tvm::String out_layout
Definition: nn.h:220
Array< IndexExpr > kernel_size
Definition: nn.h:535
double scale_d
Definition: nn.h:1210
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1055
TVM_DECLARE_ATTRS(SoftmaxAttrs, "relay.attrs.SoftmaxAttrs")
Definition: nn.h:527
TVM_DECLARE_ATTRS(Conv2DWinogradAttrs, "relay.attrs.Conv2DWinogradAttrs")
Definition: nn.h:225
TVM_DECLARE_ATTRS(DilateAttrs, "relay.attrs.DilateAttrs")
Definition: nn.h:613
tvm::String kernel_layout
Definition: nn.h:59
int groups
Definition: nn.h:540
std::string layout
Definition: nn.h:921
TVM_DECLARE_ATTRS(MaxPool3DAttrs, "relay.attrs.MaxPool3DAttrs")
Definition: nn.h:969
Array< IndexExpr > pool_size
Definition: nn.h:917
Array< IndexExpr > dilation
Definition: nn.h:54
Attributes for 3D max pool operator.
Definition: nn.h:960
double epsilon
Definition: nn.h:1332
Array< IndexExpr > output_size
Definition: nn.h:804
TVM_DECLARE_ATTRS(SparseDenseAttrs, "relay.attrs.SparseDenseAttrs")
Definition: nn.h:1140
TVM_DECLARE_ATTRS(Conv3DTransposeAttrs, "relay.attrs.Conv3DTransposeAttrs")
Definition: nn.h:388
TVM_DECLARE_ATTRS(UpSamplingAttrs, "relay.attrs.UpSamplingAttrs")
Definition: nn.h:1187
int groups
Definition: nn.h:121
int ignore_index
Definition: nn.h:1577
TVM_DECLARE_ATTRS(SpaceToBatchNDAttrs, "relay.attrs.SpaceToBatchNDAttrs")
Definition: nn.h:1552
int kernel_size
Definition: nn.h:1518
Attributes for matmul operator.
Definition: nn.h:1050
double scale_w
Definition: nn.h:1182
tvm::String layout
Definition: nn.h:1183
Attributes used in BatchToSpaceND operator.
Definition: nn.h:1562
Attributes used in layer_norm operator.
Definition: nn.h:1350
bool scale
Definition: nn.h:1354
DataType out_dtype
Definition: nn.h:386
IndexExpr channels
Definition: nn.h:308
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:128
Array< IndexExpr > strides
Definition: nn.h:878
Array< IndexExpr > dilation
Definition: nn.h:919
Array< IndexExpr > strides
Definition: nn.h:52
double dilation_value
Definition: nn.h:611
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1079
bool center
Definition: nn.h:1333
std::string data_layout
Definition: nn.h:459
bool scale
Definition: nn.h:1310
Attributes used in subpixel operators.
Definition: nn.h:1497
bool sparse_lhs
Definition: nn.h:1138
Attributes for leaky relu operator.
Definition: nn.h:1276
TVM_DECLARE_ATTRS(AdaptivePool1DAttrs, "relay.attrs.AdaptivePool1DAttrs")
Definition: nn.h:808
Array< IndexExpr > kernel_size
Definition: nn.h:57
int axis
Definition: nn.h:1331
double eps
Definition: nn.h:1411
std::string mode
Definition: nn.h:1262
tvm::String layout
Definition: nn.h:697
tvm::String out_layout
Definition: nn.h:966
std::string kernel_layout
Definition: nn.h:542
bool count_include_pad
Definition: nn.h:743
tvm::String out_layout
Definition: nn.h:854
DataType out_dtype
Definition: nn.h:1096
TVM_DECLARE_ATTRS(Conv1DTransposeAttrs, "relay.attrs.Conv1DTransposeAttrs")
Definition: nn.h:635
bool align_corners
Definition: nn.h:1185
TVM_DECLARE_ATTRS(CorrelationAttrs, "relay.attrs.CorrelationAttrs")
Definition: nn.h:1526
TVM_DECLARE_ATTRS(AdaptivePool2DAttrs, "relay.attrs.AdaptivePool2DAttrs")
Definition: nn.h:831
int axis
Definition: nn.h:1307
TVM_DECLARE_ATTRS(BiasAddAttrs, "relay.attrs.BiasAddAttrs")
Definition: nn.h:45
TVM_DECLARE_ATTRS(Conv2DAttrs, "relay.attrs.Conv2DAttrs")
Definition: nn.h:131
IndexExpr channels
Definition: nn.h:534
Attributes used in batch_norm operator.
Definition: nn.h:1306
TVM_DECLARE_ATTRS(LeakyReluAttrs, "relay.attrs.LeakyReluAttrs")
Definition: nn.h:1279
Helpers for attribute objects.
Attributes used in convolution operators with winograd algorithm.
Definition: nn.h:210
Attributes used in 3d winograd convolution operators.
Definition: nn.h:451
Attributes for avg pool operator.
Definition: nn.h:735
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1080
Attributes used in correlation operators.
Definition: nn.h:1517
tvm::String out_layout
Definition: nn.h:1009
TVM_DECLARE_ATTRS(Conv1DAttrs, "relay.attrs.Conv1DAttrs")
Definition: nn.h:63
Array< IndexExpr > pool_size
Definition: nn.h:736
Array< IndexExpr > dilation
Definition: nn.h:539
tvm::String layout
Definition: nn.h:783
int groups
Definition: nn.h:307
Array< IndexExpr > output_size
Definition: nn.h:852
TVM_DECLARE_ATTRS(DenseAttrs, "relay.attrs.DenseAttrs")
Definition: nn.h:1083
int block_size
Definition: nn.h:1498
Array< IndexExpr > strides
Definition: nn.h:304
TVM_DECLARE_ATTRS(MirrorPadAttrs, "relay.attrs.MirrorPadAttrs")
Definition: nn.h:1265
Array< Array< IndexExpr > > pad_width
Definition: nn.h:1263
Attributes for 2d adaptive pool operator.
Definition: nn.h:826
Array< IndexExpr > dilation
Definition: nn.h:214
IndexExpr units
Definition: nn.h:1095
std::string layout
Definition: nn.h:1499
TVM_DECLARE_ATTRS(BatchNormAttrs, "relay.attrs.BatchNormAttrs")
Definition: nn.h:1312
double scale_h
Definition: nn.h:1181
Array< IndexExpr > padding
Definition: nn.h:880
Array< IndexExpr > padding
Definition: nn.h:695
bool transpose_b
Definition: nn.h:1116
Attributes used in convolution operators.
Definition: nn.h:303
tvm::String data_layout
Definition: nn.h:383
TVM_DECLARE_ATTRS(GroupNormAttrs, "relay.attrs.GroupNormAttrs")
Definition: nn.h:1376
TVM_DECLARE_ATTRS(AvgPool1DAttrs, "relay.attrs.AvgPool1DAttrs")
Definition: nn.h:926
Array< IndexExpr > padding
Definition: nn.h:305
TVM_DECLARE_ATTRS(UpSampling3DAttrs, "relay.attrs.UpSampling3DAttrs")
Definition: nn.h:1217
Array< IndexExpr > padding
Definition: nn.h:119
std::string method
Definition: nn.h:1214
std::string layout
Definition: nn.h:881
double epsilon
Definition: nn.h:1308
bool ceil_mode
Definition: nn.h:1010
std::string layout
Definition: nn.h:1008
Runtime primitive data type.
Definition: data_type.h:41
tvm::String method
Definition: nn.h:1184
int tile_size
Definition: nn.h:211
std::string out_layout
Definition: nn.h:461
Array< IndexExpr > padding
Definition: nn.h:379
Array< IndexExpr > strides
Definition: nn.h:694
TVM_DECLARE_ATTRS(SparseConv2DAttrs, "relay.attrs.SparseConv2DAttrs")
Definition: nn.h:1159
Array< IndexExpr > pool_size
Definition: nn.h:961
bool count_include_pad
Definition: nn.h:924
Attributes used in 1D transposed convolution operator.
Definition: nn.h:622
bool center
Definition: nn.h:1353
Array< IndexExpr > padding
Definition: nn.h:213
tvm::String out_layout
Definition: nn.h:922
TVM_DECLARE_ATTRS(DropoutAttrs, "relay.attrs.DropoutAttrs")
Definition: nn.h:1298
String layout
Definition: nn.h:1524
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:221
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
int groups
Definition: nn.h:215
Array< IndexExpr > kernel_size
Definition: nn.h:458
std::string layout
Definition: nn.h:853
Attributes for upsampling3d operator.
Definition: nn.h:1209
std::string data_layout
Definition: nn.h:541
Array< IndexExpr > strides
Definition: nn.h:962
Array< IndexExpr > output_padding
Definition: nn.h:380
double scale_h
Definition: nn.h:1211
Array< IndexExpr > padding
Definition: nn.h:626
Attributes used in transposed convolution operator.
Definition: nn.h:375
Array< IndexExpr > kernel_size
Definition: nn.h:217
Array< Integer > block_shape
Definition: nn.h:1548
IndexExpr channels
Definition: nn.h:56
std::string coordinate_transformation_mode
Definition: nn.h:1215
Attributes used in SpaceToBatchND operator.
Definition: nn.h:1547
TVM_DECLARE_ATTRS(SparseTransposeAttrs, "relay.attrs.SparseTransposeAttrs")
Definition: nn.h:1151
double alpha
Definition: nn.h:1277
#define TVM_ATTR_FIELD(FieldName)
Declare an attribute field.
Definition: attrs.h:76
Attributes used in transposed convolution operator.
Definition: nn.h:533
bool center
Definition: nn.h:1373
Attributes for 3D avg pool operator.
Definition: nn.h:1003
Reference to string objects.
Definition: string.h:97
Array< Array< Integer > > pad_width
Definition: nn.h:1244
DataType out_dtype
Definition: nn.h:129
std::string out_layout
Definition: nn.h:632
Array< IndexExpr > dilation
Definition: nn.h:739
tvm::String kernel_layout
Definition: nn.h:384
TVM_DECLARE_ATTRS(MatmulAttrs, "relay.attrs.MatmulAttrs")
Definition: nn.h:1058
Attributes for sparse_dense operator.
Definition: nn.h:1137
Array< IndexExpr > strides
Definition: nn.h:118
bool ceil_mode
Definition: nn.h:883
Attributes for global pool operator.
Definition: nn.h:782
double beta
Definition: nn.h:1397
Attributes used in softmax operators.
Definition: nn.h:524
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:222
Attributes used in convolution operators.
Definition: nn.h:117
DataType out_dtype
Definition: nn.h:1052
Attributes used in NLLLoss operator.
Definition: nn.h:1575
tvm::String out_layout
Definition: nn.h:829
int max_displacement
Definition: nn.h:1519
Array< IndexExpr > kernel_size
Definition: nn.h:309
Attributes for 1D max pool operator.
Definition: nn.h:876
Array< IndexExpr > output_size
Definition: nn.h:827
double scale_w
Definition: nn.h:1212
TVM_DECLARE_ATTRS(Conv2DTransposeAttrs, "relay.attrs.Conv2DTransposeAttrs")
Definition: nn.h:546
TVM_DECLARE_ATTRS(BatchToSpaceNDAttrs, "relay.attrs.BatchToSpaceNDAttrs")
Definition: nn.h:1566
DataType NullValue< DataType >()
Definition: attrs.h:90
bool scale
Definition: nn.h:1374
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:314
int axis
Definition: nn.h:1351
tvm::String kernel_layout
Definition: nn.h:311
tvm::String weight_layout
Definition: nn.h:1097
std::string layout
Definition: nn.h:965
tvm::String data_layout
Definition: nn.h:58
Array< IndexExpr > padding
Definition: nn.h:1007
Attributes for batch matmul operator.
Definition: nn.h:1113
Attributes used in dropout operator.
Definition: nn.h:1296
tvm::String out_layout
Definition: nn.h:741
std::string kernel_layout
Definition: nn.h:460
Array< IndexExpr > strides
Definition: nn.h:737
int stride2
Definition: nn.h:1521
Attributes for sparse_dense operator.
Definition: nn.h:1155
Attributes for dense operator.
Definition: nn.h:1077
bool ceil_mode
Definition: nn.h:699
int groups
Definition: nn.h:456
tvm::String kernel_layout
Definition: nn.h:125
TVM_DECLARE_ATTRS(GlobalPool2DAttrs, "relay.attrs.GlobalPool2DAttrs")
Definition: nn.h:786
Array< IndexExpr > dilation
Definition: nn.h:381
IndexExpr channels
Definition: nn.h:122
Array< IndexExpr > kernel_size
Definition: nn.h:123
Array< IndexExpr > padding
Definition: nn.h:53
int axis
Definition: nn.h:1287
IndexExpr units
Definition: nn.h:1078
Attributes for 1d adaptive pool operator.
Definition: nn.h:803
DataType out_dtype
Definition: nn.h:462
bool transpose_a
Definition: nn.h:1115
Array< IndexExpr > strides
Definition: nn.h:625
Array< IndexExpr > pool_size
Definition: nn.h:1004
IndexExpr channels
Definition: nn.h:457
tvm::String out_layout
Definition: nn.h:806
bool ceil_mode
Definition: nn.h:967
Array< IndexExpr > pool_size
Definition: nn.h:693
The base class of the all the Use "curiously recurring template pattern".
Definition: attrs.h:834
DataType out_dtype
Definition: nn.h:544
Array< IndexExpr > output_padding
Definition: nn.h:627
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:127
tvm::String kernel_layout
Definition: nn.h:219
Attributes for upsampling operator.
Definition: nn.h:1180
DataType out_dtype
Definition: nn.h:61
DataType out_dtype
Definition: nn.h:315
int axis
Definition: nn.h:525
bool transpose_b
Definition: nn.h:1054
bool transpose_a
Definition: nn.h:1053
Attributes used in instance_norm operator.
Definition: nn.h:1330
Array< IndexExpr > dilation
Definition: nn.h:963
Attributes for LRN operator.
Definition: nn.h:1392
Array< IndexExpr > strides
Definition: nn.h:378
Base classes for the Relay IR.
tvm::String out_layout
Definition: nn.h:698
Array< IndexExpr > strides
Definition: nn.h:212
TVM_DECLARE_ATTRS(InstanceNormAttrs, "relay.attrs.InstanceNormAttrs")
Definition: nn.h:1336
Array< IndexExpr > strides
Definition: nn.h:918
bool scale
Definition: nn.h:1334
TVM_DECLARE_ATTRS(DensePackAttrs, "relay.attrs.DensePackAttrs")
Definition: nn.h:1099
TVM_DECLARE_ATTRS(AvgPool3DAttrs, "relay.attrs.AvgPool3DAttrs")
Definition: nn.h:1013
Attributes used in group_norm operator.
Definition: nn.h:1369
bool ceil_mode
Definition: nn.h:742
TVM_DECLARE_ATTRS(PadAttrs, "relay.attrs.PadAttrs")
Definition: nn.h:1247
TObjectRef NullValue()
Create a NodeRef type that represents null.
Definition: attrs.h:84
Attributes used for the padding operator.
Definition: nn.h:1243
TVM_DECLARE_ATTRS(AvgPool2DAttrs, "relay.attrs.AvgPool2DAttrs")
Definition: nn.h:745
bool ceil_mode
Definition: nn.h:923
Reference to PrimExprNode.
Definition: expr.h:112
Array< IndexExpr > padding
Definition: nn.h:454
DataType out_dtype
Definition: nn.h:1114
int axis
Definition: nn.h:1172
TVM_DECLARE_ATTRS(Conv3DAttrs, "relay.attrs.Conv3DAttrs")
Definition: nn.h:317
double rate
Definition: nn.h:1297
Array< IndexExpr > dilation
Definition: nn.h:120
double bias
Definition: nn.h:1395
Array< Integer > axis
Definition: nn.h:1412
Array< IndexExpr > padding
Definition: nn.h:1522
Attributes for sparse_transpose operator.
Definition: nn.h:1150
Array< IndexExpr > dilation
Definition: nn.h:1006
std::string layout
Definition: nn.h:805
TVM_DECLARE_ATTRS(SubPixelAttrs, "relay.attrs.SubPixelAttrs")
Definition: nn.h:1502
int axis
Definition: nn.h:1394
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1118
Array< IndexExpr > strides
Definition: nn.h:610
std::string reduction
Definition: nn.h:1576
int axis
Definition: nn.h:1371
DataType out_dtype
Definition: nn.h:633
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1117
tvm::String out_layout
Definition: nn.h:60
Array< IndexExpr > dilation
Definition: nn.h:696
Array< IndexExpr > kernel_size
Definition: nn.h:1157
double epsilon
Definition: nn.h:1372
Array< IndexExpr > strides
Definition: nn.h:536
tvm::String out_layout
Definition: nn.h:385
TVM_DECLARE_ATTRS(PReluAttrs, "relay.attrs.PReluAttrs")
Definition: nn.h:1289
tvm::String data_layout
Definition: nn.h:218
std::string layout
Definition: nn.h:1156
int tile_size
Definition: nn.h:452
Array< IndexExpr > padding
Definition: nn.h:920
bool is_multiply
Definition: nn.h:1523
Array< IndexExpr > dilation
Definition: nn.h:628
double epsilon
Definition: nn.h:1352
Array< IndexExpr > dilation
Definition: nn.h:879
int stride1
Definition: nn.h:1520
Array< IndexExpr > pool_size
Definition: nn.h:877
double pad_value
Definition: nn.h:1550
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:313
Attributes for L2Normalize operator.
Definition: nn.h:1410
std::string out_layout
Definition: nn.h:543
tvm::String out_layout
Definition: nn.h:312
std::string layout
Definition: nn.h:828
tvm::String pad_mode
Definition: nn.h:1245
DataType out_dtype
Definition: nn.h:1081
Array< Array< IndexExpr > > crops
Definition: nn.h:1564
std::string mode
Definition: nn.h:1500
Array< IndexExpr > kernel_size
Definition: nn.h:377
int groups
Definition: nn.h:382
Attributes used in 1D convolution operators.
Definition: nn.h:51
Array< IndexExpr > padding
Definition: nn.h:964
tvm::String out_layout
Definition: nn.h:784
Attributes for 1D avg pool operator.
Definition: nn.h:916
bool center
Definition: nn.h:1309