tvm
op.h
Go to the documentation of this file.
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one
3  * or more contributor license agreements. See the NOTICE file
4  * distributed with this work for additional information
5  * regarding copyright ownership. The ASF licenses this file
6  * to you under the Apache License, Version 2.0 (the
7  * "License"); you may not use this file except in compliance
8  * with the License. You may obtain a copy of the License at
9  *
10  * http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing,
13  * software distributed under the License is distributed on an
14  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15  * KIND, either express or implied. See the License for the
16  * specific language governing permissions and limitations
17  * under the License.
18  */
19 
27 // Acknowledgement: Most operator APIs originate from Halide.
28 #ifndef TVM_TIR_OP_H_
29 #define TVM_TIR_OP_H_
30 
31 #include <tvm/ir/expr.h>
32 #include <tvm/ir/op.h>
33 #include <tvm/ir/type.h>
34 #include <tvm/tir/expr.h>
35 #include <tvm/tir/stmt.h>
36 
37 #include <algorithm>
38 #include <limits>
39 #include <type_traits>
40 
41 namespace tvm {
42 
43 // Most common operators can be overloaded by argument type(PrimExpr).
44 // So we put them under the root namespace.
45 //
46 // We put more developer oriented APIs -- make_const and is_const under tir
47 // as they are more specific to the tir namespace.
48 
60 TVM_DLL Type GetType(const PrimExpr& expr);
61 
69 TVM_DLL Type GetTypeFromRuntimeDataType(const DataType& dtype);
70 
79 TVM_DLL runtime::DataType GetRuntimeDataType(const Type& type);
80 
88 TVM_DLL PrimExpr ret(PrimExpr value, Span span = Span());
89 
96 TVM_DLL PrimExpr max_value(const DataType& dtype, Span span = Span());
97 
104 TVM_DLL PrimExpr min_value(const DataType& dtype, Span span = Span());
105 
112 TVM_DLL PrimExpr infinity(const DataType& dtype, Span span = Span());
113 
123 TVM_DLL PrimExpr cast(const DataType& t, PrimExpr value, Span span = Span());
133 TVM_DLL PrimExpr reinterpret(const DataType& t, PrimExpr value, Span span = Span());
144 TVM_DLL PrimExpr add(PrimExpr a, PrimExpr b, Span span = Span());
155 TVM_DLL PrimExpr sub(PrimExpr a, PrimExpr b, Span span = Span());
165 TVM_DLL PrimExpr neg(PrimExpr a, Span span = Span());
176 TVM_DLL PrimExpr mul(PrimExpr a, PrimExpr b, Span span = Span());
187 TVM_DLL PrimExpr left_shift(PrimExpr a, PrimExpr b, Span span = Span());
198 TVM_DLL PrimExpr right_shift(PrimExpr a, PrimExpr b, Span span = Span());
209 TVM_DLL PrimExpr greater(PrimExpr a, PrimExpr b, Span span = Span());
220 TVM_DLL PrimExpr greater_equal(PrimExpr a, PrimExpr b, Span span = Span());
231 TVM_DLL PrimExpr less(PrimExpr a, PrimExpr b, Span span = Span());
242 TVM_DLL PrimExpr less_equal(PrimExpr a, PrimExpr b, Span span = Span());
253 TVM_DLL PrimExpr equal(PrimExpr a, PrimExpr b, Span span = Span());
264 TVM_DLL PrimExpr not_equal(PrimExpr a, PrimExpr b, Span span = Span());
274 TVM_DLL PrimExpr logical_and(PrimExpr a, PrimExpr b, Span span = Span());
284 TVM_DLL PrimExpr logical_or(PrimExpr a, PrimExpr b, Span span = Span());
293 TVM_DLL PrimExpr logical_not(PrimExpr a, Span span = Span());
308 TVM_DLL PrimExpr div(PrimExpr a, PrimExpr b, Span span = Span());
321 TVM_DLL PrimExpr truncdiv(PrimExpr a, PrimExpr b, Span span = Span());
334 TVM_DLL PrimExpr truncmod(PrimExpr a, PrimExpr b, Span span = Span());
350 TVM_DLL PrimExpr indexdiv(PrimExpr a, PrimExpr b, Span span = Span());
366 TVM_DLL PrimExpr shapediv(PrimExpr a, PrimExpr b, Span span = Span());
381 TVM_DLL PrimExpr indexmod(PrimExpr a, PrimExpr b, Span span = Span());
392 TVM_DLL PrimExpr floordiv(PrimExpr a, PrimExpr b, Span span = Span());
403 TVM_DLL PrimExpr ceildiv(PrimExpr a, PrimExpr b, Span span = Span());
414 TVM_DLL PrimExpr floormod(PrimExpr a, PrimExpr b, Span span = Span());
425 TVM_DLL PrimExpr max(PrimExpr a, PrimExpr b, Span span = Span());
436 TVM_DLL PrimExpr min(PrimExpr a, PrimExpr b, Span span = Span());
447 TVM_DLL PrimExpr bitwise_and(PrimExpr a, PrimExpr b, Span span = Span());
458 TVM_DLL PrimExpr bitwise_or(PrimExpr a, PrimExpr b, Span span = Span());
469 TVM_DLL PrimExpr bitwise_xor(PrimExpr a, PrimExpr b, Span span = Span());
479 TVM_DLL PrimExpr bitwise_neg(PrimExpr a, Span span = Span());
491 TVM_DLL PrimExpr if_then_else(PrimExpr cond, PrimExpr true_value, PrimExpr false_value,
492  Span span = Span());
499 TVM_DLL PrimExpr likely(PrimExpr cond, Span span = Span());
506 TVM_DLL PrimExpr pow(PrimExpr x, PrimExpr y, Span span = Span());
514 TVM_DLL PrimExpr abs(PrimExpr x, Span span = Span());
521 TVM_DLL PrimExpr isnan(PrimExpr x, Span span = Span());
522 
529 TVM_DLL PrimExpr isfinite(PrimExpr x, Span span = Span());
530 
537 TVM_DLL PrimExpr isinf(PrimExpr x, Span span = Span());
538 
547 TVM_DLL PrimExpr sum(PrimExpr source, Array<tir::IterVar> axis, Array<PrimExpr> init = {},
548  Span span = Span());
549 
557 TVM_DLL PrimExpr all(PrimExpr source, Array<tir::IterVar> axis, Array<PrimExpr> init = {},
558  Span span = Span());
559 
568 TVM_DLL PrimExpr any(PrimExpr source, Array<tir::IterVar> axis, Array<PrimExpr> init = {},
569  Span span = Span());
570 
579 TVM_DLL PrimExpr max(PrimExpr source, Array<tir::IterVar> axis, Array<PrimExpr> init = {},
580  Span span = Span());
581 
590 TVM_DLL PrimExpr min(PrimExpr source, Array<tir::IterVar> axis, Array<PrimExpr> init = {},
591  Span span = Span());
592 
601 TVM_DLL PrimExpr prod(PrimExpr source, Array<tir::IterVar> axis, Array<PrimExpr> init = {},
602  Span span = Span());
603 
610 TVM_DLL PrimExpr floor(PrimExpr x, Span span = Span());
611 
618 TVM_DLL PrimExpr ceil(PrimExpr x, Span span = Span());
619 
626 TVM_DLL PrimExpr round(PrimExpr x, Span span = Span());
627 
635 TVM_DLL PrimExpr nearbyint(PrimExpr x, Span span = Span());
636 
643 TVM_DLL PrimExpr trunc(PrimExpr x, Span span = Span());
644 
653 TVM_DLL PrimExpr LargeUIntImm(DataType dtype, int64_t low, int64_t high, Span span = Span());
654 
675 TVM_DLL PrimExpr q_multiply_shift(PrimExpr x, PrimExpr y, PrimExpr q, PrimExpr s,
676  Span span = Span());
677 
678 // Intrinsic operators
679 #define TVM_DECLARE_INTRIN_UNARY(OpName) \
680  inline PrimExpr OpName(PrimExpr x, Span span = Span()) { \
681  static const Op& op = Op::Get("tir." #OpName); \
682  if (x.dtype().is_bfloat16()) { \
683  DataType bf16_dtype = x.dtype(); \
684  DataType fp32_dtype(kDLFloat, 32, bf16_dtype.lanes()); \
685  PrimExpr x_fp32 = tir::Cast(fp32_dtype, {x}, span); \
686  PrimExpr result_fp32 = tir::Call(fp32_dtype, op, {x_fp32}, span); \
687  return tir::Cast(bf16_dtype, {result_fp32}, span); \
688  } else { \
689  return tir::Call(x.dtype(), op, {x}, span); \
690  } \
691  }
692 
718 
719 #define TVM_DECLARE_INTRIN_BINARY(OpName) \
720  inline PrimExpr OpName(PrimExpr x, PrimExpr y, Span span = Span()) { \
721  static const Op& op = Op::Get("tir." #OpName); \
722  return tir::Call(x.dtype(), op, {x, y}, span); \
723  }
724 
730 
731 namespace tir {
732 
739 inline bool IsPointerType(const Type& type, const DataType& element_type) {
740  if (!type.defined()) return false;
741  if (const auto* ptr_type = type.as<PointerTypeNode>()) {
742  if (const auto* prim_type = ptr_type->element_type.as<PrimTypeNode>()) {
743  return prim_type->dtype == element_type;
744  }
745  }
746  return false;
747 }
748 
757 template <typename ValueType,
758  typename = typename std::enable_if<std::is_pod<ValueType>::value>::type>
759 inline PrimExpr make_const(DataType t, ValueType value, Span span = Span());
766 inline PrimExpr make_zero(DataType t, Span span = Span());
773 inline PrimExpr const_true(int lanes = 1, Span span = Span()) {
774  return make_const(DataType::UInt(1, lanes), 1);
775 }
782 inline PrimExpr const_false(int lanes = 1, Span span = Span()) {
783  return make_const(DataType::UInt(1, lanes), 0);
784 }
791 inline const int64_t* as_const_int(const PrimExpr& x) {
792  if (!x.defined()) return nullptr;
793  if (const tir::IntImmNode* op = x.as<tir::IntImmNode>()) {
794  return &(op->value);
795  }
796 
797  return nullptr;
798 }
799 
806 inline bool is_const_int(const PrimExpr& x, int64_t value);
807 
813 inline bool is_no_op(const tir::Stmt& stmt);
814 
821 inline bool is_one(const PrimExpr& x) { return is_const_int(x, 1); }
822 
829 inline bool is_zero(const PrimExpr& x) { return is_const_int(x, 0); }
830 
836 inline bool is_const_int(const PrimExpr& x);
837 
843 inline bool is_const_number(const PrimExpr& x);
844 
854 template <typename FReduce>
855 inline PrimExpr foldl(FReduce freduce, PrimExpr init_value, const Array<PrimExpr>& values,
856  Span span = Span());
857 
866 TVM_DLL bool is_const_power_of_two_integer(const PrimExpr& x, int* shift);
867 
868 // Implementation details after this
869 inline bool is_const_int(const PrimExpr& x) { return as_const_int(x); }
870 
871 inline bool is_const_number(const PrimExpr& x) {
872  if (x.as<tir::IntImmNode>()) {
873  return true;
874  } else if (x.as<tir::FloatImmNode>()) {
875  return true;
876  } else if (const auto* op = x.as<tir::BroadcastNode>()) {
877  return (op->value->IsInstance<tir::IntImmNode>() || op->value->IsInstance<tir::FloatImmNode>());
878  }
879  return false;
880 }
881 
882 inline bool is_positive_const(const PrimExpr& a) {
883  const int64_t* as_int = as_const_int(a);
884  return as_int && (*as_int > 0);
885 }
886 
887 inline bool is_negative_const(const PrimExpr& a) {
888  const int64_t* as_int = as_const_int(a);
889  return as_int && (*as_int < 0);
890 }
891 
892 inline bool is_const_int(const PrimExpr& x, int64_t value) {
893  const int64_t* as_int = as_const_int(x);
894  return as_int && (*as_int == value);
895 }
896 
897 inline bool is_no_op(const tir::Stmt& stmt) {
898  if (!stmt.defined()) return true;
899  if (const auto* op = stmt.as<tir::EvaluateNode>()) {
900  return is_const_int(op->value);
901  }
902  if (const auto* op = stmt.as<tir::SeqStmtNode>()) {
903  return op->seq.size() == 0;
904  }
905  return false;
906 }
907 
908 template <typename ValueType>
909 inline PrimExpr MakeConstScalar(DataType t, ValueType value, Span span = Span()) {
910  if (t.is_int()) return IntImm(t, static_cast<int64_t>(value), span);
911  if (t.is_uint()) {
912  // Use IntImm if it is a small integer
913  uint64_t uval = static_cast<uint64_t>(value);
914  if (value < static_cast<ValueType>(0)) {
915  LOG(FATAL) << "cannot make uint from negative value " << value;
916  } else if (uval <= static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) {
917  return IntImm(t, static_cast<int64_t>(value), span);
918  } else {
919  uint64_t mask = (static_cast<uint64_t>(1) << 32U) - 1U;
920  uint64_t low = uval & mask;
921  uint64_t high = uval >> 32U;
922  return LargeUIntImm(t, static_cast<int64_t>(low), static_cast<int64_t>(high), span);
923  }
924  }
925  if (t.is_float() || t.is_bfloat16()) return FloatImm(t, static_cast<double>(value), span);
926  // For now, we store const scalar values of custom datatypes within doubles; later, during the
927  // datatypes lowering pass, we will lower the value to its true representation in the format
928  // specified by the datatype.
929  // TODO(gus) when do we need to start worrying about doubles not being precise enough?
930  if (static_cast<uint8_t>(t.code()) >= static_cast<uint8_t>(DataType::kCustomBegin)) {
931  return FloatImm(t, static_cast<double>(value), span);
932  }
933  LOG(FATAL) << "cannot make const for type " << t;
934  return PrimExpr();
935 }
936 
937 template <>
938 inline PrimExpr MakeConstScalar(DataType t, bool value, Span span) {
939  return MakeConstScalar(t, static_cast<int>(value), span);
940 }
941 
942 template <typename ValueType, typename>
943 inline PrimExpr make_const(DataType t, ValueType value, Span span) {
944  if (t.lanes() == 1) {
945  return MakeConstScalar(t, value, span);
946  } else {
947  return tir::Broadcast(MakeConstScalar(t.element_of(), value, span), t.lanes(), span);
948  }
949 }
950 
951 inline PrimExpr make_zero(DataType t, Span span) {
952  if (t.is_handle()) {
953  return reinterpret(t, make_const(DataType::UInt(64), 0, span));
954  }
955  return make_const(t, 0, span);
956 }
957 
958 template <typename FReduce>
959 inline PrimExpr foldl(FReduce freduce, PrimExpr init_value, const Array<PrimExpr>& values,
960  Span span) {
961  for (PrimExpr val : values) {
962  init_value = freduce(init_value, val, span);
963  }
964  return init_value;
965 }
966 
967 } // namespace tir
968 
969 // additional const expression overloading
970 #define TVM_DEFINE_ASSIGN_OP_OVERLOAD(Name, OpFunc) \
971  inline PrimExpr Name(PrimExpr& a, PrimExpr b) { \
972  a = OpFunc(a, b); \
973  return a; \
974  }
975 
976 #define TVM_DEFINE_BINOP_CONST_VAL_OVERLOAD(Name) \
977  inline PrimExpr Name(const PrimExpr& a, float b) { return Name(a, PrimExpr(b)); } \
978  inline PrimExpr Name(float a, const PrimExpr& b) { return Name(PrimExpr(a), b); } \
979  inline PrimExpr Name(int a, const PrimExpr& b) { \
980  return Name(tir::make_const(b.dtype(), a), b); \
981  } \
982  inline PrimExpr Name(const PrimExpr& a, int b) { \
983  return Name(a, tir::make_const(a.dtype(), b)); \
984  } \
985  inline PrimExpr Name(const PrimExpr& a, double b) { \
986  return Name(a, tir::make_const(DataType::Float(64), b)); \
987  }
988 
989 #define TVM_DEFINE_BINOP_CONST_VAL_OVERLOAD_SPANNED(Name) \
990  inline PrimExpr Name(const PrimExpr& a, float b, Span span = Span()) { \
991  return Name(a, PrimExpr(b), span); \
992  } \
993  inline PrimExpr Name(float a, const PrimExpr& b, Span span = Span()) { \
994  return Name(PrimExpr(a), b, span); \
995  } \
996  inline PrimExpr Name(int a, const PrimExpr& b, Span span = Span()) { \
997  return Name(tir::make_const(b.dtype(), a), b, span); \
998  } \
999  inline PrimExpr Name(const PrimExpr& a, int b, Span span = Span()) { \
1000  return Name(a, tir::make_const(a.dtype(), b), span); \
1001  } \
1002  inline PrimExpr Name(const PrimExpr& a, double b, Span span = Span()) { \
1003  return Name(a, tir::make_const(DataType::Float(64), b), span); \
1004  }
1005 
1006 #define TVM_DEFINE_LOGICAL_OP_CONST_VAL_OVERLOAD(Name) \
1007  inline PrimExpr Name(const PrimExpr& a, bool b) { return Name(a, PrimExpr(b)); } \
1008  inline PrimExpr Name(bool a, const PrimExpr& b) { return Name(PrimExpr(a), b); }
1009 
1010 #define TVM_DEFINE_LOGICAL_OP_CONST_VAL_OVERLOAD_SPANNED(Name) \
1011  inline PrimExpr Name(const PrimExpr& a, bool b, Span span = Span()) { \
1012  return Name(a, PrimExpr(b), span); \
1013  } \
1014  inline PrimExpr Name(bool a, const PrimExpr& b, Span span = Span()) { \
1015  return Name(PrimExpr(a), b, span); \
1016  }
1017 
1018 #define TVM_DEFINE_INT_OP_CONST_VAL_OVERLOAD(Name) \
1019  inline PrimExpr Name(const PrimExpr& a, int b) { \
1020  return Name(a, tir::make_const(a.dtype(), b)); \
1021  } \
1022  inline PrimExpr Name(int a, const PrimExpr& b) { return Name(tir::make_const(b.dtype(), a), b); }
1023 
1024 #define TVM_DEFINE_INT_OP_CONST_VAL_OVERLOAD_SPANNED(Name) \
1025  inline PrimExpr Name(const PrimExpr& a, int b, Span span = Span()) { \
1026  return Name(a, tir::make_const(a.dtype(), b), span); \
1027  } \
1028  inline PrimExpr Name(int a, const PrimExpr& b, Span span = Span()) { \
1029  return Name(tir::make_const(b.dtype(), a), b, span); \
1030  }
1031 
1032 TVM_DEFINE_ASSIGN_OP_OVERLOAD(operator+=, operator+);
1033 TVM_DEFINE_ASSIGN_OP_OVERLOAD(operator-=, operator-);
1034 TVM_DEFINE_ASSIGN_OP_OVERLOAD(operator*=, operator*);
1038 TVM_DEFINE_BINOP_CONST_VAL_OVERLOAD(operator>); // NOLINT(*)
1040 TVM_DEFINE_BINOP_CONST_VAL_OVERLOAD(operator<); // NOLINT(*)
1052 // integer related ops
1064 TVM_DEFINE_INT_OP_CONST_VAL_OVERLOAD(operator>>); // NOLINT(*)
1065 TVM_DEFINE_INT_OP_CONST_VAL_OVERLOAD(operator<<); // NOLINT(*)
1069 // logical ops
1074 
1080 template <typename TA>
1081 inline void DivAmbiguityError(const TA& a) {
1082  constexpr bool div_ambiguity = !std::is_class<TA>::value;
1083  static_assert(div_ambiguity,
1084  "TVM supports multiple types of integer divisions, "
1085  "please call div, indexdiv/indexmod, "
1086  "floordiv/floormod or truncdiv/truncmod directly "
1087  "to avoid ambiguity in the code. "
1088  "Checkout these functions in tir/op.h.");
1089 }
1090 
1091 // The following code are not intended to be used in the codebase.
1092 // Instead, they generate clear compiler errors that ask developers
1093 // to use the specific division function.
1094 // The second template argument is necessary to make sure the
1095 // code compiles lazily by the compiler during invocation.
1096 template <typename TB>
1097 inline PrimExpr operator/(const PrimExpr& a, const TB& b) {
1098  DivAmbiguityError(a);
1099  return a;
1100 }
1101 
1102 template <typename TB>
1103 inline PrimExpr operator/=(const PrimExpr& a, const TB& b) {
1104  DivAmbiguityError(a);
1105  return a;
1106 }
1107 
1108 template <typename TB>
1109 inline PrimExpr operator%(const PrimExpr& a, const TB& b) {
1110  DivAmbiguityError(a);
1111  return a;
1112 }
1113 } // namespace tvm
1114 #endif // TVM_TIR_OP_H_
PrimExpr rsqrt(PrimExpr x, Span span=Span())
Definition: op.h:700
tvm::Span Span
Definition: base.h:65
bool is_const_power_of_two_integer(const PrimExpr &x, int *shift)
Check whether x is a constant power of two If x is power of two, write the power to the shift...
PrimExpr likely(PrimExpr cond, Span span=Span())
Mark condition as likely.
bool is_int() const
Definition: data_type.h:99
PrimExpr bitwise_xor(PrimExpr a, PrimExpr b, Span span=Span())
take bitwise xor of two values
PrimExpr log10(PrimExpr x, Span span=Span())
Definition: op.h:703
PrimExpr min(PrimExpr a, PrimExpr b, Span span=Span())
take minimum of two values
PrimExpr neg(PrimExpr a, Span span=Span())
negation.
PrimExpr greater_equal(PrimExpr a, PrimExpr b, Span span=Span())
greater_equal
bool is_one(const PrimExpr &x)
Check whether x is a constant integer 1.
Definition: op.h:821
PrimExpr popcount(PrimExpr x, Span span=Span())
Definition: op.h:705
PrimExpr atan(PrimExpr x, Span span=Span())
Definition: op.h:713
PrimExpr abs(PrimExpr x, Span span=Span())
Calculate absolute value of x.
PrimExpr ceildiv(PrimExpr a, PrimExpr b, Span span=Span())
compute ceil(a / b)
PrimExpr floor(PrimExpr x, Span span=Span())
Calculate floor(x)
PrimExpr exp10(PrimExpr x, Span span=Span())
Definition: op.h:695
Definition: data_type.h:57
PrimExpr min_value(const DataType &dtype, Span span=Span())
PrimExpr indexmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder floor(a / b) where a and b are non-negative.
PrimExpr make_const(DataType t, ValueType value, Span span=Span())
Make a const value with certain data type.
Definition: op.h:943
Base expr nodes in TVM.
PrimExpr sinh(PrimExpr x, Span span=Span())
Definition: op.h:710
PrimExpr add(PrimExpr a, PrimExpr b, Span span=Span())
add operator
#define TVM_DECLARE_INTRIN_BINARY(OpName)
Definition: op.h:719
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
#define TVM_DEFINE_ASSIGN_OP_OVERLOAD(Name, OpFunc)
Definition: op.h:970
PrimExpr tan(PrimExpr x, Span span=Span())
Definition: op.h:706
PrimExpr sub(PrimExpr a, PrimExpr b, Span span=Span())
subtraction operator
PrimExpr atanh(PrimExpr x, Span span=Span())
Definition: op.h:716
PrimExpr nearbyint(PrimExpr x, Span span=Span())
Calculates std::nearbyint(x)
bool is_float() const
Definition: data_type.h:93
PrimExpr asin(PrimExpr x, Span span=Span())
Definition: op.h:711
The container of seq statement. Represent a sequence of statements.
Definition: stmt.h:723
PrimExpr equal(PrimExpr a, PrimExpr b, Span span=Span())
equal
PrimExpr ceil(PrimExpr x, Span span=Span())
Calculate ceil(x)
PrimExpr ldexp(PrimExpr x, PrimExpr y, Span span=Span())
Definition: op.h:729
PrimExpr if_then_else(PrimExpr cond, PrimExpr true_value, PrimExpr false_value, Span span=Span())
Conditional expression.
Constant floating point literals in the program.
Definition: expr.h:535
PrimExpr logical_or(PrimExpr a, PrimExpr b, Span span=Span())
or
int code() const
Definition: data_type.h:81
PrimExpr bitwise_or(PrimExpr a, PrimExpr b, Span span=Span())
take bitwise or of two values
PrimExpr max(const PrimExpr &a, double b, Span span=Span())
Definition: op.h:1042
PrimExpr foldl(FReduce freduce, PrimExpr init_value, const Array< PrimExpr > &values, Span span=Span())
Left fold.
Definition: op.h:959
const int64_t * as_const_int(const PrimExpr &x)
Get x as constant int expression.
Definition: op.h:791
PrimExpr greater(PrimExpr a, PrimExpr b, Span span=Span())
greater
PrimExpr MakeConstScalar(DataType t, ValueType value, Span span=Span())
Definition: op.h:909
PrimExpr atan2(PrimExpr x, PrimExpr y, Span span=Span())
Definition: op.h:725
#define TVM_DEFINE_LOGICAL_OP_CONST_VAL_OVERLOAD(Name)
Definition: op.h:1006
runtime::DataType GetRuntimeDataType(const Type &type)
Get the implied DataType for storing values with type during runtime.
Low-level raw pointer type.
Definition: type.h:150
PrimExpr asinh(PrimExpr x, Span span=Span())
Definition: op.h:715
#define TVM_DEFINE_LOGICAL_OP_CONST_VAL_OVERLOAD_SPANNED(Name)
Definition: op.h:1010
PrimExpr cast(const DataType &t, PrimExpr value, Span span=Span())
cast value to type.
PrimExpr log(PrimExpr x, Span span=Span())
Definition: op.h:701
PrimExpr round(PrimExpr x, Span span=Span())
Calculate round(x)
Constant integer literals in the program.
Definition: expr.h:489
Primitive operators(builtin intrinsics) and registry for them.
Managed reference class to FloatImmNode.
Definition: expr.h:564
PrimExpr exp2(PrimExpr x, Span span=Span())
Definition: op.h:694
PrimExpr less_equal(PrimExpr a, PrimExpr b, Span span=Span())
less_equal
PrimExpr const_true(int lanes=1, Span span=Span())
Make a constant true expression.
Definition: op.h:773
Definition: span.h:115
TIR statements.
PrimExpr floormod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder of floordiv
PrimExpr operator/=(const PrimExpr &a, const TB &b)
Definition: op.h:1103
PrimExpr div(PrimExpr a, PrimExpr b, Span span=Span())
compute division in C semantics.
PrimExpr hypot(PrimExpr x, PrimExpr y, Span span=Span())
Definition: op.h:728
PrimExpr const_false(int lanes=1, Span span=Span())
Make a constant false expression.
Definition: op.h:782
IR/AST nodes for the unified type system in TVM.
Managed reference to BroadcastNode.
Definition: expr.h:855
bool defined() const
Definition: object.h:544
Runtime primitive data type.
Definition: data_type.h:41
PrimExpr log1p(PrimExpr x, Span span=Span())
Definition: op.h:704
TIR expressions.
PrimExpr sum(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
sum of source expression over axis
PrimExpr reinterpret(const DataType &t, PrimExpr value, Span span=Span())
perform reinterpret cast value to type.
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
PrimExpr indexdiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b) where a and b are non-negative.
Managed reference class to IntImmNode.
Definition: expr.h:518
PrimExpr q_multiply_shift(PrimExpr x, PrimExpr y, PrimExpr q, PrimExpr s, Span span=Span())
Execute a multiplication between two Q-numbers x and y followed by a right shift s. The mathematical expression is:
#define TVM_DECLARE_INTRIN_UNARY(OpName)
Definition: op.h:679
PrimExpr isfinite(PrimExpr x, Span span=Span())
Check if x is finite.
#define TVM_DEFINE_INT_OP_CONST_VAL_OVERLOAD(Name)
Definition: op.h:1018
Create a vector where all the elements are value.
Definition: expr.h:823
PrimExpr clz(PrimExpr x, Span span=Span())
Definition: op.h:717
Container of all statements.
Definition: stmt.h:57
PrimExpr cosh(PrimExpr x, Span span=Span())
Definition: op.h:708
bool is_uint() const
Definition: data_type.h:101
PrimExpr max(PrimExpr a, PrimExpr b, Span span=Span())
take maximum of two values
#define TVM_DEFINE_BINOP_CONST_VAL_OVERLOAD(Name)
Definition: op.h:976
int64_t value
the Internal value.
Definition: expr.h:492
PrimExpr shapediv(PrimExpr a, PrimExpr b, Span span=Span())
compute ceil(a / b) where a and b are non-negative.
PrimExpr make_zero(DataType t, Span span=Span())
Make a const zero expr.
Definition: op.h:951
PrimExpr bitwise_neg(PrimExpr a, Span span=Span())
take bitwise negation of two values
PrimExpr any(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
logical Or of source expression over axis
PrimExpr erf(PrimExpr x, Span span=Span())
Definition: op.h:696
Evaluates an expression. This is mostly used for putting a Call node into Stmt.
Definition: stmt.h:869
PrimExpr nextafter(PrimExpr x, PrimExpr y, Span span=Span())
Definition: op.h:726
int lanes() const
Definition: data_type.h:87
PrimExpr logical_and(PrimExpr a, PrimExpr b, Span span=Span())
and
PrimExpr truncmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder of truncdiv
tvm::Type Type
Definition: type.h:47
bool is_bfloat16() const
Definition: data_type.h:97
PrimExpr floordiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b)
PrimExpr acos(PrimExpr x, Span span=Span())
Definition: op.h:712
Type GetType(const PrimExpr &expr)
Get the type of the expression under the unified type system.
PrimExpr log2(PrimExpr x, Span span=Span())
Definition: op.h:702
PrimExpr all(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
logical And of source expression over axis
bool IsPointerType(const Type &type, const DataType &element_type)
Check if type is a pointer to a runtime element type.
Definition: op.h:739
bool is_const_int(const PrimExpr &x, int64_t value)
Check whether x is a constant integer expression.
Definition: op.h:892
PrimExpr not_equal(PrimExpr a, PrimExpr b, Span span=Span())
not_equal
PrimExpr cos(PrimExpr x, Span span=Span())
Definition: op.h:707
PrimExpr acosh(PrimExpr x, Span span=Span())
Definition: op.h:714
PrimExpr sqrt(PrimExpr x, Span span=Span())
Definition: op.h:699
PrimExpr tanh(PrimExpr x, Span span=Span())
Definition: op.h:697
PrimExpr infinity(const DataType &dtype, Span span=Span())
PrimExpr LargeUIntImm(DataType dtype, int64_t low, int64_t high, Span span=Span())
Construct a large uint constant by its low 32 bits and high 32bits.
Type GetTypeFromRuntimeDataType(const DataType &dtype)
Get the type corresponding to DataType.
PrimExpr max_value(const DataType &dtype, Span span=Span())
bool is_const_number(const PrimExpr &x)
Check whether x is an integer/float constant.
Definition: op.h:871
PrimExpr trunc(PrimExpr x, Span span=Span())
Calculate trunc(x)
#define TVM_DEFINE_INT_OP_CONST_VAL_OVERLOAD_SPANNED(Name)
Definition: op.h:1024
PrimExpr ret(PrimExpr value, Span span=Span())
Return the value.
PrimExpr sin(PrimExpr x, Span span=Span())
Definition: op.h:709
std::function< PrimExpr(PrimExpr source, const Array< IterVar > &axis, Array< PrimExpr > init, Span span)> FReduce
The operation to use for CommReduce.
Definition: reduction.h:47
bool is_negative_const(const PrimExpr &a)
Definition: op.h:887
void DivAmbiguityError(const TA &a)
Helper function to raise a compiler error about division ambiguity.
Definition: op.h:1081
PrimExpr operator/(PrimExpr a, PrimExpr b)
division operator
PrimExpr mul(PrimExpr a, PrimExpr b, Span span=Span())
multiplication operator
PrimExpr copysign(PrimExpr x, PrimExpr y, Span span=Span())
Definition: op.h:727
Managed reference to TypeNode.
Definition: type.h:93
PrimExpr logical_not(PrimExpr a, Span span=Span())
not
bool is_positive_const(const PrimExpr &a)
Definition: op.h:882
PrimExpr operator%(const PrimExpr &a, const TB &b)
Definition: op.h:1109
PrimExpr right_shift(PrimExpr a, PrimExpr b, Span span=Span())
right shift operator
PrimExpr exp(PrimExpr x, Span span=Span())
Definition: op.h:693
bool is_handle() const
Definition: data_type.h:103
Reference to PrimExprNode.
Definition: expr.h:112
PrimExpr bitwise_and(PrimExpr a, PrimExpr b, Span span=Span())
take bitwise and of two values
Primitive data types used in the low-level IR.
Definition: type.h:106
bool is_no_op(const tir::Stmt &stmt)
Check whether stmt is nop.
Definition: op.h:897
const ObjectType * as() const
Try to downcast the internal Object to a raw pointer of a corresponding type.
Definition: object.h:865
PrimExpr truncdiv(PrimExpr a, PrimExpr b, Span span=Span())
compute trunc(a / b)
PrimExpr sigmoid(PrimExpr x, Span span=Span())
Definition: op.h:698
#define TVM_DEFINE_BINOP_CONST_VAL_OVERLOAD_SPANNED(Name)
Definition: op.h:989
PrimExpr left_shift(PrimExpr a, PrimExpr b, Span span=Span())
left shift operator
PrimExpr prod(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
product of source expression over axis
bool is_zero(const PrimExpr &x)
Check whether x is a constant integer 0.
Definition: op.h:829
runtime::DataType DataType
Definition: data_type.h:389
PrimExpr less(PrimExpr a, PrimExpr b, Span span=Span())
less
static DataType UInt(int bits, int lanes=1)
Construct an uint type.
Definition: data_type.h:161
PrimExpr isinf(PrimExpr x, Span span=Span())
Check if x is infinite.
PrimExpr pow(PrimExpr x, PrimExpr y, Span span=Span())
Calculate power(x, y)
DataType element_of() const
Get the scalar version of the type.
Definition: data_type.h:126
PrimExpr isnan(PrimExpr x, Span span=Span())
Check if x is NaN.