Note
This tutorial can be used interactively with Google Colab! You can also click here to run the Jupyter notebook locally.
6. Model Tuning with microTVM¶
Authors: Andrew Reusch, Mehrdad Hessar
This tutorial explains how to autotune a model using the C runtime.
Install microTVM Python dependencies¶
TVM does not include a package for Python serial communication, so we must install one before using microTVM. We will also need TFLite to load models.
%%shell pip install pyserial==3.5 tflite==2.1
# You can skip the following section (installing Zephyr) if the following flag is False.
# Installing Zephyr takes ~20 min.
import os
use_physical_hw = bool(os.getenv("TVM_MICRO_USE_HW"))
Install Zephyr¶
%%shell # Install west and ninja python3 -m pip install west apt-get install -y ninja-build # Install ZephyrProject ZEPHYR_PROJECT_PATH="/content/zephyrproject" export ZEPHYR_BASE=${ZEPHYR_PROJECT_PATH}/zephyr west init ${ZEPHYR_PROJECT_PATH} cd ${ZEPHYR_BASE} git checkout v3.2-branch cd .. west update west zephyr-export chmod -R o+w ${ZEPHYR_PROJECT_PATH} # Install Zephyr SDK cd /content ZEPHYR_SDK_VERSION="0.15.2" wget "https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v${ZEPHYR_SDK_VERSION}/zephyr-sdk-${ZEPHYR_SDK_VERSION}_linux-x86_64.tar.gz" tar xvf "zephyr-sdk-${ZEPHYR_SDK_VERSION}_linux-x86_64.tar.gz" mv "zephyr-sdk-${ZEPHYR_SDK_VERSION}" zephyr-sdk rm "zephyr-sdk-${ZEPHYR_SDK_VERSION}_linux-x86_64.tar.gz" # Install python dependencies python3 -m pip install -r "${ZEPHYR_BASE}/scripts/requirements.txt"
Import Python dependencies¶
import json
import numpy as np
import pathlib
import tvm
from tvm.relay.backend import Runtime
import tvm.micro.testing
Defining the model¶
To begin with, define a model in Relay to be executed on-device. Then create an IRModule from relay model and fill parameters with random numbers.
data_shape = (1, 3, 10, 10)
weight_shape = (6, 3, 5, 5)
data = tvm.relay.var("data", tvm.relay.TensorType(data_shape, "float32"))
weight = tvm.relay.var("weight", tvm.relay.TensorType(weight_shape, "float32"))
y = tvm.relay.nn.conv2d(
data,
weight,
padding=(2, 2),
kernel_size=(5, 5),
kernel_layout="OIHW",
out_dtype="float32",
)
f = tvm.relay.Function([data, weight], y)
relay_mod = tvm.IRModule.from_expr(f)
relay_mod = tvm.relay.transform.InferType()(relay_mod)
weight_sample = np.random.rand(
weight_shape[0], weight_shape[1], weight_shape[2], weight_shape[3]
).astype("float32")
params = {"weight": weight_sample}
Defining the target¶
Now we define the TVM target that describes the execution environment. This looks very similar to target definitions from other microTVM tutorials. Alongside this we pick the C Runtime to code generate our model against.
When running on physical hardware, choose a target and a board that describe the hardware. There are multiple hardware targets that could be selected from PLATFORM list in this tutorial. You can chose the platform by passing –platform argument when running this tutorial.
RUNTIME = Runtime("crt", {"system-lib": True})
TARGET = tvm.micro.testing.get_target("crt")
# Compiling for physical hardware
# --------------------------------------------------------------------------
# When running on physical hardware, choose a TARGET and a BOARD that describe the hardware. The
# STM32L4R5ZI Nucleo target and board is chosen in the example below.
if use_physical_hw:
BOARD = os.getenv("TVM_MICRO_BOARD", default="nucleo_l4r5zi")
SERIAL = os.getenv("TVM_MICRO_SERIAL", default=None)
TARGET = tvm.micro.testing.get_target("zephyr", BOARD)
Extracting tuning tasks¶
Not all operators in the Relay program printed above can be tuned. Some are so trivial that only a single implementation is defined; others don’t make sense as tuning tasks. Using extract_from_program, you can produce a list of tunable tasks.
Because task extraction involves running the compiler, we first configure the compiler’s transformation passes; we’ll apply the same configuration later on during autotuning.
pass_context = tvm.transform.PassContext(opt_level=3, config={"tir.disable_vectorize": True})
with pass_context:
tasks = tvm.autotvm.task.extract_from_program(relay_mod["main"], {}, TARGET)
assert len(tasks) > 0
Configuring microTVM¶
Before autotuning, we need to define a module loader and then pass that to a tvm.autotvm.LocalBuilder. Then we create a tvm.autotvm.LocalRunner and use both builder and runner to generates multiple measurements for auto tunner.
In this tutorial, we have the option to use x86 host as an example or use different targets from Zephyr RTOS. If you choose pass –platform=host to this tutorial it will uses x86. You can choose other options by choosing from PLATFORM list.
module_loader = tvm.micro.AutoTvmModuleLoader(
template_project_dir=pathlib.Path(tvm.micro.get_microtvm_template_projects("crt")),
project_options={"verbose": False},
)
builder = tvm.autotvm.LocalBuilder(
n_parallel=1,
build_kwargs={"build_option": {"tir.disable_vectorize": True}},
do_fork=True,
build_func=tvm.micro.autotvm_build_func,
runtime=RUNTIME,
)
runner = tvm.autotvm.LocalRunner(number=1, repeat=1, timeout=100, module_loader=module_loader)
measure_option = tvm.autotvm.measure_option(builder=builder, runner=runner)
# Compiling for physical hardware
if use_physical_hw:
module_loader = tvm.micro.AutoTvmModuleLoader(
template_project_dir=pathlib.Path(tvm.micro.get_microtvm_template_projects("zephyr")),
project_options={
"board": BOARD,
"verbose": False,
"project_type": "host_driven",
"serial_number": SERIAL,
},
)
builder = tvm.autotvm.LocalBuilder(
n_parallel=1,
build_kwargs={"build_option": {"tir.disable_vectorize": True}},
do_fork=False,
build_func=tvm.micro.autotvm_build_func,
runtime=RUNTIME,
)
runner = tvm.autotvm.LocalRunner(number=1, repeat=1, timeout=100, module_loader=module_loader)
measure_option = tvm.autotvm.measure_option(builder=builder, runner=runner)
Run Autotuning¶
Now we can run autotuning separately on each extracted task on microTVM device.
autotune_log_file = pathlib.Path("microtvm_autotune.log.txt")
if os.path.exists(autotune_log_file):
os.remove(autotune_log_file)
num_trials = 10
for task in tasks:
tuner = tvm.autotvm.tuner.GATuner(task)
tuner.tune(
n_trial=num_trials,
measure_option=measure_option,
callbacks=[
tvm.autotvm.callback.log_to_file(str(autotune_log_file)),
tvm.autotvm.callback.progress_bar(num_trials, si_prefix="M"),
],
si_prefix="M",
)
Timing the untuned program¶
For comparison, let’s compile and run the graph without imposing any autotuning schedules. TVM will select a randomly-tuned implementation for each operator, which should not perform as well as the tuned operator.
with pass_context:
lowered = tvm.relay.build(relay_mod, target=TARGET, runtime=RUNTIME, params=params)
temp_dir = tvm.contrib.utils.tempdir()
project = tvm.micro.generate_project(
str(tvm.micro.get_microtvm_template_projects("crt")),
lowered,
temp_dir / "project",
{"verbose": False},
)
# Compiling for physical hardware
if use_physical_hw:
temp_dir = tvm.contrib.utils.tempdir()
project = tvm.micro.generate_project(
str(tvm.micro.get_microtvm_template_projects("zephyr")),
lowered,
temp_dir / "project",
{
"board": BOARD,
"verbose": False,
"project_type": "host_driven",
"serial_number": SERIAL,
"config_main_stack_size": 4096,
},
)
project.build()
project.flash()
with tvm.micro.Session(project.transport()) as session:
debug_module = tvm.micro.create_local_debug_executor(
lowered.get_graph_json(), session.get_system_lib(), session.device
)
debug_module.set_input(**lowered.get_params())
print("########## Build without Autotuning ##########")
debug_module.run()
del debug_module
########## Build without Autotuning ##########
Node Name Ops Time(us) Time(%) Shape Inputs Outputs Measurements(us)
--------- --- -------- ------- ----- ------ ------- ----------------
tvmgen_default_fused_nn_contrib_conv2d_NCHWc tvmgen_default_fused_nn_contrib_conv2d_NCHWc 304.6 98.741 (1, 2, 10, 10, 3) 2 1 [304.6]
tvmgen_default_fused_layout_transform_1 tvmgen_default_fused_layout_transform_1 2.907 0.942 (1, 6, 10, 10) 1 1 [2.907]
tvmgen_default_fused_layout_transform tvmgen_default_fused_layout_transform 0.978 0.317 (1, 1, 10, 10, 3) 1 1 [0.978]
Total_time - 308.485 - - - - -
Timing the tuned program¶
Once autotuning completes, you can time execution of the entire program using the Debug Runtime:
with tvm.autotvm.apply_history_best(str(autotune_log_file)):
with pass_context:
lowered_tuned = tvm.relay.build(relay_mod, target=TARGET, runtime=RUNTIME, params=params)
temp_dir = tvm.contrib.utils.tempdir()
project = tvm.micro.generate_project(
str(tvm.micro.get_microtvm_template_projects("crt")),
lowered_tuned,
temp_dir / "project",
{"verbose": False},
)
# Compiling for physical hardware
if use_physical_hw:
temp_dir = tvm.contrib.utils.tempdir()
project = tvm.micro.generate_project(
str(tvm.micro.get_microtvm_template_projects("zephyr")),
lowered_tuned,
temp_dir / "project",
{
"board": BOARD,
"verbose": False,
"project_type": "host_driven",
"serial_number": SERIAL,
"config_main_stack_size": 4096,
},
)
project.build()
project.flash()
with tvm.micro.Session(project.transport()) as session:
debug_module = tvm.micro.create_local_debug_executor(
lowered_tuned.get_graph_json(), session.get_system_lib(), session.device
)
debug_module.set_input(**lowered_tuned.get_params())
print("########## Build with Autotuning ##########")
debug_module.run()
del debug_module
########## Build with Autotuning ##########
Node Name Ops Time(us) Time(%) Shape Inputs Outputs Measurements(us)
--------- --- -------- ------- ----- ------ ------- ----------------
tvmgen_default_fused_nn_contrib_conv2d_NCHWc tvmgen_default_fused_nn_contrib_conv2d_NCHWc 100.6 97.362 (1, 6, 10, 10, 1) 2 1 [100.6]
tvmgen_default_fused_layout_transform_1 tvmgen_default_fused_layout_transform_1 1.77 1.713 (1, 6, 10, 10) 1 1 [1.77]
tvmgen_default_fused_layout_transform tvmgen_default_fused_layout_transform 0.955 0.924 (1, 1, 10, 10, 3) 1 1 [0.955]
Total_time - 103.325 - - - - -
Total running time of the script: ( 1 minutes 25.850 seconds)