tvm
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
transform.h
Go to the documentation of this file.
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one
3  * or more contributor license agreements. See the NOTICE file
4  * distributed with this work for additional information
5  * regarding copyright ownership. The ASF licenses this file
6  * to you under the Apache License, Version 2.0 (the
7  * "License"); you may not use this file except in compliance
8  * with the License. You may obtain a copy of the License at
9  *
10  * http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing,
13  * software distributed under the License is distributed on an
14  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15  * KIND, either express or implied. See the License for the
16  * specific language governing permissions and limitations
17  * under the License.
18  */
19 
24 #ifndef TVM_TOPI_TRANSFORM_H_
25 #define TVM_TOPI_TRANSFORM_H_
26 
27 #include <tvm/te/operation.h>
28 #include <tvm/tir/data_layout.h>
29 #include <tvm/tir/index_map.h>
30 #include <tvm/topi/broadcast.h>
36 #include <tvm/topi/tags.h>
37 
38 #include <algorithm>
39 #include <iterator>
40 #include <limits>
41 #include <string>
42 #include <unordered_set>
43 #include <vector>
44 
45 namespace tvm {
46 namespace topi {
47 
48 using namespace tvm::te;
49 using namespace topi::detail;
50 
68 inline Tensor sliding_window(const Tensor& x, int axis, Array<Integer> window_shape,
69  Array<Integer> strides, std::string name = "T_sliding_window",
70  std::string tag = "") {
71  CHECK_GE(axis, 0);
72  auto _axis = size_t(axis);
73  CHECK_LT(_axis, x->shape.size()) << "axis must be a valid dimension index of x.";
74  CHECK_EQ(x->shape.size() - _axis, window_shape.size())
75  << "There must be a window shape for every dimension of x "
76  << "over which we are sliding the window.";
77  CHECK_EQ(strides.size(), window_shape.size()) << "Windows and strides should be the same length.";
78 
79  // Compute the new shape.
80  Array<PrimExpr> new_shape;
81  // Dimensions up until `axis` remain the same.
82  for (size_t i = 0; i < _axis; ++i) {
83  new_shape.push_back(x->shape[i]);
84  }
85 
86  // New dimensions which result from sliding the window in each dimension. One new dimension per
87  // window dimension.
88  for (size_t i = 0; i < window_shape.size(); ++i) {
89  // Length of the shape along this dimension.
90  auto dim_len = x->shape[_axis + i];
91  // Length of the window along this dimension.
92  auto window_len = window_shape[i];
93  // Strides along this dimension.
94  auto stride = strides[i];
95 
96  new_shape.push_back(floordiv(dim_len - (window_len - 1) + stride - 1, stride));
97  }
98 
99  // Dimensions comprising the window.
100  for (size_t i = 0; i < window_shape.size(); ++i) {
101  new_shape.push_back(window_shape[i]);
102  }
103 
104  ICHECK(new_shape.size() == _axis + 2 * window_shape.size());
105 
106  return compute(
107  new_shape,
108  [&](const Array<Var>& indices) {
109  // The index at which to index the old tensor x.
110  Array<PrimExpr> idx;
111 
112  // Dimensions up until `axis` remain the same.
113  for (size_t i = 0; i < _axis; ++i) {
114  idx.push_back(indices[i]);
115  }
116 
117  for (size_t i = 0; i < window_shape.size(); ++i) {
118  // Which window in this dimension we are indexing.
119  auto window_idx = indices[_axis + i];
120  // Which index within the window we are indexing.
121  auto idx_within_window = indices[_axis + window_shape.size() + i];
122  // Stride value for this dimension.
123  auto stride = strides[i];
124 
125  idx.push_back(window_idx * stride + idx_within_window);
126  }
127 
128  ICHECK(idx.size() == x->shape.size());
129 
130  return x(idx);
131  },
132  name, tag);
133 }
134 
147 inline Tensor expand_dims(const Tensor& x, int axis, int num_newaxis = 1,
148  std::string name = "T_expand_dims", std::string tag = kBroadcast) {
149  int ndim = static_cast<int>(x->shape.size());
150  ICHECK(-ndim - 1 <= axis && axis <= ndim)
151  << "expand_dims only accepts `axis` in [-data.ndim - 1, data.ndim]"
152  << ", but got axis = " << axis << ", and data.ndim = " << ndim;
153  ICHECK(num_newaxis >= 0) << "expand_dims only accepts `num_newaxis >= 0`"
154  << ", but got num_newaxis = " << num_newaxis;
155  if (axis < 0) {
156  // Calculate offset from last dimension
157  axis = ndim + axis + 1;
158  }
159  Array<PrimExpr> new_shape;
160  for (size_t i = 0; i < static_cast<size_t>(axis); ++i) {
161  new_shape.push_back(x->shape[i]);
162  }
163  for (size_t i = 0; i < static_cast<size_t>(num_newaxis); ++i) {
164  new_shape.push_back(1);
165  }
166  for (size_t i = axis; i < x->shape.size(); ++i) {
167  new_shape.push_back(x->shape[i]);
168  }
169 
170  return compute(
171  new_shape,
172  [&](const Array<Var>& indices) {
173  Array<PrimExpr> idx;
174  for (size_t i = 0; i < static_cast<size_t>(axis); ++i) {
175  idx.push_back(indices[i]);
176  }
177  for (size_t i = axis + num_newaxis; i < indices.size(); ++i) {
178  idx.push_back(indices[i]);
179  }
180  return x(idx);
181  },
182  name, tag);
183 }
184 
196 inline Tensor transpose(const Tensor& x, Array<Integer> axes, std::string name = "T_transpose",
197  std::string tag = kInjective) {
198  if (!axes.defined() || axes.size() == 0) {
199  axes = Array<Integer>();
200  for (int i = static_cast<int>(x->shape.size()) - 1; i >= 0; --i) {
201  axes.push_back(i);
202  }
203  }
204 
205  Array<PrimExpr> new_shape;
206  for (size_t i = 0; i < axes.size(); ++i) {
207  int axis = static_cast<int>(axes[i]->value);
208  int new_axis = axis;
209  if (axis < 0) {
210  new_axis = static_cast<int>(x->shape.size()) + axis;
211  axes.Set(i, new_axis);
212  }
213  ICHECK((new_axis >= 0) && (new_axis < static_cast<int>(x->shape.size())))
214  << "axis=" << axis << " is invalid for the " << static_cast<int>(x->shape.size())
215  << "-dimensional input tensor";
216 
217  for (size_t j = 0; j < axes.size(); ++j) {
218  if (i != j) {
219  ICHECK(new_axis != static_cast<int>(axes[j]->value)) << "repeated axis in transpose";
220  }
221  }
222  new_shape.push_back(x->shape[new_axis]);
223  }
224 
225  return compute(
226  new_shape,
227  [&](const Array<Var>& indices) {
228  std::vector<PrimExpr> idx;
229  for (size_t i = 0; i < axes.size(); ++i) {
230  idx.push_back(1);
231  }
232  for (size_t i = 0; i < axes.size(); ++i) {
233  int axis = static_cast<int>(axes[i]->value);
234  idx[axis] = indices[i];
235  }
236  return x(idx);
237  },
238  name, tag);
239 }
240 
255 inline Tensor reverse_sequence(const Tensor& x, const Tensor& seq_lengths, int seq_axis = 1,
256  int batch_axis = 0, std::string name = "T_reverse_sequence",
257  std::string tag = kInjective) {
258  size_t src_tensor_dim = x->shape.size();
259  int seq_axis_inp = seq_axis;
260 
261  if (seq_lengths.defined()) {
262  size_t seq_lengths_dim = seq_lengths->shape.size();
263  int batch_axis_inp = batch_axis;
264  if (batch_axis < 0) {
265  batch_axis = static_cast<int>(x->shape.size()) + batch_axis;
266  }
267 
268  ICHECK(seq_lengths_dim == 1) << "seq_lengths should be 1D vector";
269 
270  ICHECK(GetConstInt(seq_lengths->shape[0]) == GetConstInt(x->shape[batch_axis]))
271  << "For reverse_sequnece seq_lengths size should match with dimension of batch axis"
272  << ", but got dimension of batch_axis = " << GetConstInt(x->shape[batch_axis])
273  << ", and seq_length size = " << GetConstInt(seq_lengths->shape[0]);
274 
275  ICHECK((0 <= batch_axis) && (batch_axis < static_cast<int>(x->shape.size())))
276  << "batch_axis=" << batch_axis_inp << " is invalid for the "
277  << static_cast<int>(x->shape.size()) << "-dimensional input tensor";
278  }
279 
280  if (seq_axis < 0) {
281  seq_axis = static_cast<int>(x->shape.size()) + seq_axis;
282  }
283  ICHECK((0 <= seq_axis) && (seq_axis < static_cast<int>(x->shape.size())))
284  << "seq_axis=" << seq_axis_inp << " is invalid for the " << static_cast<int>(x->shape.size())
285  << "-dimensional input tensor";
286 
287  auto func = [&](const Array<Var>& indices) {
288  Array<PrimExpr> real_indices;
289  for (size_t i = 0; i < src_tensor_dim; ++i) {
290  if (i == static_cast<size_t>(seq_axis)) {
291  if (seq_lengths.defined()) {
292  auto len = seq_lengths(indices[batch_axis]);
293  auto idx = if_then_else(
294  len <= 1 || len <= indices[i], indices[i],
295  if_then_else(len > x->shape[i], x->shape[i] - 1 - indices[i], len - 1 - indices[i]));
296  real_indices.push_back(idx);
297  } else {
298  real_indices.push_back(x->shape[i] - 1 - indices[i]);
299  }
300  } else {
301  real_indices.push_back(indices[i]);
302  }
303  }
304  return x(real_indices);
305  };
306 
307  return compute(x->shape, func, name, tag);
308 }
309 
320 inline Tensor reshape(const Tensor& x, Array<PrimExpr> newshape, std::string name = "T_reshape",
321  std::string tag = kInjective) {
322  auto x_shape = x->shape;
323  Array<PrimExpr> target_shape;
324 
325  for (const auto& ele : newshape) {
326  target_shape.push_back(ele);
327  }
328 
329  // If either the input shape or the target shape contains a zero, return an empty tensor.
330  if (is_empty_shape(target_shape) || is_empty_shape(x->shape)) {
331  return compute(
332  target_shape, [&](const Array<Var>& indices) { return tvm::cast(x->dtype, 0); }, name, tag);
333  } else {
334  return compute(
335  target_shape,
336  [&](const Array<Var>& indices) {
337  return x(UnravelIndex(
338  RavelIndex(Array<PrimExpr>{indices.begin(), indices.end()}, target_shape), x_shape));
339  },
340  name, tag);
341  }
342 }
343 
355 inline Tensor unravel_index(const Tensor& x, const Tensor& shape, std::string name = "T_unravel",
356  std::string tag = kInjective) {
357  auto x_shape = x->shape;
358  auto shape_shape = shape->shape;
359 
360  Array<PrimExpr> oshape;
361  oshape.push_back(shape_shape[0]);
362  if (x_shape.size() != 0) {
363  oshape.push_back(x_shape[0]);
364  }
365 
366  auto func = [&](const Array<Var>& indices) {
367  auto i = indices[0];
368  std::vector<PrimExpr> indices_divs;
369  PrimExpr ret = 0;
370  PrimExpr cur_val = 0;
371  PrimExpr index_val = 0;
372 
373  if (x_shape.size() != 0) {
374  index_val = x[indices[1]];
375  } else {
376  index_val = x();
377  }
378  indices_divs.push_back(index_val);
379  for (int v = GetConstInt(shape_shape[0]) - 1; v >= 0; --v) {
380  ret = tvm::if_then_else(i == v, indexmod(indices_divs.back(), shape[v]), ret);
381  cur_val = indexdiv(indices_divs.back(), shape[v]);
382  indices_divs.push_back(cur_val);
383  }
384  return ret;
385  };
386 
387  return compute(oshape, func, name, tag);
388 }
389 
403 inline Tensor squeeze(const Tensor& x, Array<Integer> axis, bool atleast1d = false,
404  std::string name = "T_squeeze", std::string tag = kInjective) {
405  auto ndim = x->shape.size();
406  std::vector<int> axis_val;
407  if (!axis.defined()) {
408  for (size_t i = 0; i < ndim; ++i) {
409  if (IsConstInt(x->shape[i]) && GetConstInt(x->shape[i]) == 1) {
410  axis_val.push_back(static_cast<int>(i));
411  }
412  }
413  } else {
414  for (size_t i = 0; i < axis.size(); ++i) {
415  int64_t val = axis[i]->value;
416  if (val < 0) {
417  val += static_cast<int>(x->shape.size());
418  }
419  if (IsConstInt(x->shape[val])) {
420  ICHECK_EQ(GetConstInt(x->shape[val]), 1) << "Dimension " << val << " must have size 1";
421  }
422  axis_val.push_back(val);
423  }
424  }
425 
426  std::unordered_set<int> axis_set(axis_val.begin(), axis_val.end());
427 
428  Array<PrimExpr> out_shape;
429  for (size_t i = 0; i < ndim; ++i) {
430  if (axis_set.count(static_cast<int>(i)) == 0) {
431  out_shape.push_back(x->shape[i]);
432  }
433  }
434  if (out_shape.size() == 0 && atleast1d) {
435  out_shape.push_back(1);
436  }
437 
438  return compute(
439  out_shape,
440  [&](const Array<Var>& indices) {
441  Array<PrimExpr> real_indices;
442  int flag = 0;
443  for (size_t i = 0; i < ndim; ++i) {
444  if (axis_set.count(static_cast<int>(i)) == 0) {
445  real_indices.push_back(indices[i - flag]);
446  } else {
447  real_indices.push_back(0);
448  flag += 1;
449  }
450  }
451  return x(real_indices);
452  },
453  name, tag);
454 }
455 
466 inline Tensor concatenate(const Array<Tensor>& inputs, int axis = 0, std::string name = "T_concat",
467  std::string tag = kInjective) {
468  int ndim = static_cast<int>(inputs[0]->shape.size());
469  ICHECK(-ndim <= axis && axis < ndim) << "concatenate only accepts `axis` in [-ndim, ndim)"
470  << ", but got axis = " << axis << ", and ndim = " << ndim;
471  if (axis < 0) {
472  axis += ndim;
473  }
474  ICHECK_LT(axis, inputs[0]->shape.size()) << "axis out of bounds";
475 
476  Array<PrimExpr> axis_sizes;
477  for (auto t : inputs) {
478  axis_sizes.push_back(t->shape[axis]);
479  }
480  arith::Analyzer analyzer;
481  PrimExpr join_size = axis_sizes[0];
482  for (size_t i = 1; i < axis_sizes.size(); ++i) {
483  join_size += axis_sizes[i];
484  }
485  join_size = analyzer.Simplify(join_size);
486  Array<PrimExpr> out_shape;
487  for (size_t i = 0; i < inputs[0]->shape.size(); ++i) {
488  out_shape.push_back(i == static_cast<size_t>(axis) ? join_size : inputs[0]->shape[i]);
489  }
490 
491  return compute(
492  out_shape,
493  [&](const Array<Var>& indices) {
494  auto ret = inputs[0](indices);
495  auto ind = indices[axis];
496  for (size_t i = 0; i < inputs.size() - 1; ++i) {
497  ind -= axis_sizes[i];
498 
499  Array<PrimExpr> idx;
500  for (size_t i = 0; i < static_cast<size_t>(axis); ++i) {
501  idx.push_back(indices[i]);
502  }
503  idx.push_back(ind);
504  for (size_t i = axis + 1; i < indices.size(); ++i) {
505  idx.push_back(indices[i]);
506  }
507 
508  ret = tvm::if_then_else(ind >= 0, inputs[i + 1](idx), ret);
509  }
510  return ret;
511  },
512  name, tag);
513 }
514 
525 inline Tensor stack(const Array<Tensor>& inputs, int axis = 0, std::string name = "T_stack",
526  std::string tag = kInjective) {
527  int ndim = static_cast<int>(inputs[0]->shape.size());
528  ICHECK(-ndim - 1 <= axis && axis <= ndim)
529  << "stack only accepts `axis` in [-ndim, ndim)"
530  << ", but got axis = " << axis << ", and ndim = " << ndim;
531  if (axis < 0) {
532  axis += ndim + 1;
533  }
534  ICHECK_LT(axis, inputs[0]->shape.size() + 1) << "axis out of bounds";
535 
536  const int stack_size = static_cast<int>(inputs.size());
537  Array<PrimExpr> out_shape;
538  for (size_t i = 0; i < static_cast<size_t>(axis); ++i) out_shape.push_back(inputs[0]->shape[i]);
539  out_shape.push_back(stack_size);
540  for (size_t i = static_cast<size_t>(axis); i < static_cast<size_t>(ndim); ++i)
541  out_shape.push_back(inputs[0]->shape[i]);
542 
543  return compute(
544  out_shape,
545  [&](const Array<Var>& indices) {
546  Array<PrimExpr> idx;
547  for (size_t i = 0; i < indices.size(); ++i)
548  if (i != static_cast<size_t>(axis)) idx.push_back(indices[i]);
549  auto ind = indices[axis];
550  auto ret = inputs[0](idx);
551  for (int i = 0; i < static_cast<int>(inputs.size() - 1); ++i) {
552  ret = tvm::if_then_else(ind == i + 1, inputs[i + 1](idx), ret);
553  }
554  return ret;
555  },
556  name, tag);
557 }
558 
571 inline Array<Tensor> split(const Tensor& x, Array<PrimExpr> split_indices, int axis,
572  std::string name = "T_split", std::string tag = kInjective) {
573  if (axis < 0) {
574  axis += static_cast<int>(x->shape.size());
575  }
576  ICHECK_LT(axis, x->shape.size()) << "axis out of bounds";
577 
578  auto src_axis_size = x->shape[axis];
579  std::vector<PrimExpr> begin_ids;
580  begin_ids.push_back(0);
581 
582  for (auto idx : split_indices) {
583  auto idx_node = idx.as<IntImmNode>();
584  auto back_node = begin_ids.back().as<IntImmNode>();
585  if (idx_node && back_node) {
586  ICHECK_GT(idx_node->value, back_node->value) << "split_indices must be sorted";
587  }
588  begin_ids.push_back(idx);
589  }
590 
591  Array<Array<PrimExpr>> out_shapes;
592  for (size_t i = 0; i < begin_ids.size(); ++i) {
593  PrimExpr out_axis_size;
594  if (i == begin_ids.size() - 1) {
595  out_axis_size = src_axis_size - begin_ids[i];
596  } else {
597  out_axis_size = begin_ids[i + 1] - begin_ids[i];
598  }
599 
601  for (size_t i = 0; i < static_cast<size_t>(axis); ++i) {
602  shape.push_back(x->shape[i]);
603  }
604  shape.push_back(out_axis_size);
605  for (size_t i = axis + 1; i < x->shape.size(); ++i) {
606  shape.push_back(x->shape[i]);
607  }
608 
609  out_shapes.push_back(shape);
610  }
611 
612  Array<Tensor> result;
613  for (size_t i = 0; i < begin_ids.size(); ++i) {
614  result.push_back(compute(
615  out_shapes[i],
616  [&](const Array<Var>& indices) {
617  auto begin = begin_ids[i];
618  Array<PrimExpr> real_indices;
619  for (size_t j = 0; j < static_cast<size_t>(axis); ++j) {
620  real_indices.push_back(indices[j]);
621  }
622  real_indices.push_back(indices[axis] + begin);
623  for (size_t j = axis + 1; j < indices.size(); ++j) {
624  real_indices.push_back(indices[j]);
625  }
626 
627  return x(real_indices);
628  },
629  name, tag));
630  }
631 
632  return result;
633 }
634 
648 inline Tensor dynamic_strided_slice(const Tensor& x, const Array<PrimExpr>& begin,
649  const Array<PrimExpr>& end, const Array<PrimExpr>& strides,
650  std::string name = "T_dynamic_strided_slice",
651  std::string tag = kInjective) {
652  const size_t src_tensor_dim = x->shape.size();
653  ICHECK_LE(begin.size(), src_tensor_dim);
654  ICHECK_LE(end.size(), src_tensor_dim);
655  ICHECK_LE(strides.size(), src_tensor_dim);
656  ICHECK_EQ(begin.size(), end.size());
657  ICHECK_EQ(begin.size(), strides.size());
658 
659  const size_t num_slice_axes = begin.size();
660  Array<PrimExpr> out_shape;
661 
662  for (size_t i = 0; i < num_slice_axes; ++i) {
663  auto d = indexdiv(end[i] - begin[i], strides[i]);
664  if (d->IsInstance<tvm::IntImmNode>()) {
665  // Preserve static dimension if possible
666  out_shape.push_back(d);
667  } else {
668  out_shape.push_back(tvm::tir::Var("dim"));
669  }
670  }
671 
672  for (size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
673  out_shape.push_back(x->shape[i]);
674  }
675 
676  return te::compute(
677  out_shape,
678  [&](const Array<tvm::tir::Var>& indices) {
679  Array<PrimExpr> real_indices;
680  for (size_t i = 0; i < num_slice_axes; ++i) {
681  real_indices.push_back(indices[i] * strides[i] + tvm::min(begin[i], x->shape[i] - 1));
682  }
683  // keep input dim
684  for (size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
685  real_indices.push_back(indices[i]);
686  }
687  return x(real_indices);
688  },
689  name, tag);
690 }
691 
706  const te::Tensor& end, const te::Tensor& strides,
707  std::string name = "T_strided_slice_dynamic",
708  std::string tag = topi::kInjective) {
709  DataType index_dtype = begin->shape[0]->dtype;
710  const int64_t num_dynamic_axes = begin->shape[0].as<IntImmNode>()->value;
711  ICHECK_EQ(end->shape[0].as<IntImmNode>()->value, num_dynamic_axes);
712  ICHECK_EQ(strides->shape[0].as<IntImmNode>()->value, num_dynamic_axes);
713 
714  Array<PrimExpr> begin_expr, end_expr, strides_expr;
715  for (int64_t i = 0; i < num_dynamic_axes; ++i) {
716  auto ind = make_const(index_dtype, i);
717  begin_expr.push_back(begin(ind));
718  end_expr.push_back(end(ind));
719  strides_expr.push_back(strides(ind));
720  }
721  return dynamic_strided_slice(x, begin_expr, end_expr, strides_expr, name, tag);
722 }
723 
739  const Array<PrimExpr>& ishape, const Array<Integer>& begin, const Array<Integer>& end,
740  const Array<Integer>& strides, const Array<Integer>& axes, const std::string& slice_mode) {
741  ICHECK(axes.size() == begin.size() && axes.size() == end.size() && axes.size() == strides.size());
742  std::vector<int64_t> begin_vec, end_vec, strides_vec;
743  std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
744  auto begin_canonicalized = StridedSliceCanonicalizeBegin(ishape, begin_vec, strides_vec, axes,
745  begin[0]->dtype, slice_mode);
746  return StridedSliceOutputShape(ishape, begin_vec, end_vec, strides_vec, axes, slice_mode,
747  begin_canonicalized, true);
748 }
749 
766 inline Tensor strided_slice_with_axes(const Tensor& x, const Array<Integer>& begin,
767  const Array<Integer>& end, const Array<Integer>& strides,
768  const Array<Integer>& axes, std::string slice_mode = "end",
769  std::string name = "T_strided_slice_with_axes",
770  std::string tag = kInjective) {
771  const size_t src_tensor_dim = x->shape.size();
772  ICHECK(axes.size() <= src_tensor_dim);
773  ICHECK(axes.size() == begin.size() && axes.size() == end.size() && axes.size() == strides.size());
774 
775  std::vector<int64_t> begin_vec, end_vec, strides_vec;
776  std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
777 
778  auto begin_expr = StridedSliceCanonicalizeBegin(x->shape, begin_vec, strides_vec, axes,
779  begin[0]->dtype, slice_mode);
780  auto out_shape = StridedSliceOutputShape(x->shape, begin_vec, end_vec, strides_vec, axes,
781  slice_mode, begin_expr);
782 
783  return te::compute(
784  out_shape,
785  [&](const Array<tir::Var>& indices) {
786  Array<PrimExpr> real_indices;
787  for (size_t i = 0; i < out_shape.size(); ++i) real_indices.push_back(indices[i]);
788  for (size_t i = 0; i < axes.size(); ++i) {
789  auto stride = make_const(strides[i].dtype(), strides_vec[i]);
790  PrimExpr ind = indices[axes[i].IntValue()] * stride + begin_expr[i];
791  real_indices.Set(axes[i].IntValue(), ind);
792  }
793  return x(real_indices);
794  },
795  name, tag);
796 }
797 
812 inline Tensor strided_slice(const Tensor& x, const Array<Integer>& begin, const Array<Integer>& end,
813  const Array<Integer>& strides, std::string slice_mode = "end",
814  std::string name = "T_strided_slice", std::string tag = kInjective) {
815  size_t src_tensor_dim = static_cast<size_t>(x->shape.size());
816  Array<Integer> axes;
817  for (size_t i = 0; i < src_tensor_dim; ++i) axes.push_back(i);
818  Array<Integer> begin_full(begin);
819  Array<Integer> end_full(end);
820  Array<Integer> strides_full(strides);
821 
822  DataType index_dtype = begin.size() > 0 ? begin[0]->dtype : DataType::Int(64);
823  const IntImm one = IntImm(index_dtype, 1);
824  const IntImm zero = IntImm(index_dtype, 0);
825  const IntImm max_range = Downcast<IntImm>(max_value(index_dtype));
826 
827  for (size_t i = strides.size(); i < src_tensor_dim; ++i) {
828  strides_full.push_back(one);
829  }
830  for (size_t i = begin.size(); i < src_tensor_dim; ++i) {
831  begin_full.push_back(GetConstInt(strides_full[i]) > 0 ? zero : max_range);
832  }
833  for (size_t i = end.size(); i < src_tensor_dim; ++i) {
834  end_full.push_back(GetConstInt(strides_full[i]) < 0 ? zero : max_range);
835  }
836 
837  return strided_slice_with_axes(x, begin_full, end_full, strides_full, axes, slice_mode, name,
838  tag);
839 }
840 
853 inline Array<Tensor> split_sections(const Tensor& x, int num_sections, int axis,
854  std::string name = "T_split_sections",
855  std::string tag = kInjective) {
856  if (axis < 0) {
857  axis += static_cast<int>(x->shape.size());
858  }
859  ICHECK_LT(axis, x->shape.size()) << "axis out of bounds";
860 
861  auto src_axis_size = x->shape[axis];
862 
863  ICHECK_GT(num_sections, 0) << "Slice count must be > 0";
864 
865  if (auto node = src_axis_size.as<IntImmNode>()) {
866  ICHECK_EQ(node->value % num_sections, 0)
867  << "num_sections must be an integer factor of the size of axis " << axis << " ("
868  << node->value << ")";
869  }
870 
871  Array<PrimExpr> split_indices;
872  auto seg_size = indexdiv(src_axis_size, num_sections);
873  for (int i = 0; i < num_sections; ++i) {
874  // region at index 0 is added by split()
875  if (i != 0) {
876  split_indices.push_back(seg_size * i);
877  }
878  }
879 
880  return split(x, split_indices, axis, name, tag);
881 }
882 
895 inline Tensor take(const Tensor& a, const Tensor& indices, int batch_dims,
896  std::string mode = "clip", std::string name = "T_take",
897  std::string tag = kInjective) {
898  Array<PrimExpr> a_shape = a->shape;
899  Array<PrimExpr> out_shape = indices->shape;
900  PrimExpr a_size = 1;
901  for (size_t i = 0; i < a_shape.size(); ++i) {
902  a_size = a_size * a_shape[i];
903  }
904 
905  if (mode == "clip") {
906  return compute(
907  out_shape,
908  [&](const Array<Var>& out_index) {
909  auto idx = tvm::min(tvm::max(0, indices(out_index)), a_size - 1);
910  return a(UnravelIndex(idx, a_shape));
911  },
912  name, tag);
913  } else if (mode == "fast") {
914  LOG(WARNING) << "Fast mode segfaults when there are out-of-bounds indices. "
915  "Make sure input indices are in bound";
916  return compute(
917  out_shape,
918  [&](const Array<Var>& out_index) { return a(UnravelIndex(indices(out_index), a_shape)); },
919  name, tag);
920  } else { // mode == "wrap"
921  return compute(
922  out_shape,
923  [&](const Array<Var>& out_index) {
924  auto idx = truncmod(truncmod(indices(out_index), a_size) + a_size, a_size);
925  return a(UnravelIndex(idx, a_shape));
926  },
927  name, tag);
928  }
929 }
930 
943 inline Tensor sequence_mask(const Tensor& data, const Tensor& valid_length, double mask_value,
944  int axis, std::string name = "T_sequence_mask",
945  std::string tag = kInjective) {
946  ICHECK(axis == 0 || axis == 1) << "axis must be either 0 or 1";
947  ICHECK_EQ(valid_length->shape.size(), 1) << "valid_length must have ndim=1, i.e., (batch_size,).";
948  auto length_dim = data->shape[axis];
949  auto batch_dim = data->shape[1 - axis];
950  Array<PrimExpr> out_shape = data->shape;
951  Tensor out = compute(
952  out_shape,
953  [&](const Array<Var>& out_index) {
954  Array<PrimExpr> len_index;
955  auto tid = out_index[axis];
956  auto bid = out_index[1 - axis];
957  len_index.push_back(bid);
958  PrimExpr ret =
959  tvm::if_then_else(tvm::cast(valid_length->dtype, tid) >= valid_length(len_index),
960  tvm::tir::make_const(data->dtype, mask_value), data(out_index));
961  return ret;
962  },
963  name, tag);
964  return out;
965 }
966 
981 inline Tensor take(const Tensor& a, const Tensor& indices, int batch_dims, int axis,
982  std::string mode = "clip", std::string name = "T_take",
983  std::string tag = kInjective) {
984  if (axis < 0) {
985  axis += static_cast<int>(a->shape.size());
986  }
987  ICHECK_GE(axis, 0) << "axis out of bounds";
988  ICHECK_LT(axis, a->shape.size()) << "axis out of bounds";
989  auto axis_dim = a->shape[axis];
990  int indices_len = static_cast<int>(indices->shape.size());
991 
992  int batch_dims_ = batch_dims;
993  if (batch_dims_ != 0) {
994  ICHECK_GE(batch_dims_, -static_cast<int>(indices->shape.size())) << "batch_dims out of bounds";
995  ICHECK_LE(batch_dims_, indices->shape.size()) << "batch_dims out of bounds";
996 
997  if (batch_dims_ < 0) {
998  batch_dims_ = indices->shape.size() + batch_dims_;
999  }
1000 
1001  ICHECK_LT(batch_dims_, a->shape.size()) << "batch_dims out of bounds";
1002  ICHECK_LE(batch_dims_, axis) << "batch_dims must be less than or equal to axis";
1003  for (int i = 0; i < batch_dims_; ++i) {
1004  auto addr1 = a->shape[i];
1005  auto addr2 = indices->shape[i];
1006  auto v1 = static_cast<IntImm*>(&addr1)->get()->value;
1007  auto v2 = static_cast<IntImm*>(&addr2)->get()->value;
1008  ICHECK_EQ(v1, v2) << "a.shape[" << i << "] should be equal to indices.shape[" << i << "]";
1009  }
1010  }
1011 
1012  // The result shape is a.shape[:axis] + indices.shape[batch_dims:] +
1013  // a.shape[axis + 1:].
1014 
1015  Array<PrimExpr> out_shape;
1016  for (int i = 0; i < batch_dims_; ++i) {
1017  out_shape.push_back(a->shape[i]);
1018  }
1019  for (int i = batch_dims_; i < axis; ++i) {
1020  out_shape.push_back(a->shape[i]);
1021  }
1022  for (size_t i = static_cast<size_t>(batch_dims_); i < indices->shape.size(); ++i) {
1023  out_shape.push_back(indices->shape[i]);
1024  }
1025  for (size_t i = axis + 1; i < a->shape.size(); ++i) {
1026  out_shape.push_back(a->shape[i]);
1027  }
1028 
1029  if (mode == "clip") {
1030  if (batch_dims_ == 0) {
1031  return compute(
1032  out_shape,
1033  [&](const Array<Var>& out_index) {
1034  Array<PrimExpr> indices_position;
1035  for (size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1036  indices_position.push_back(out_index[j]);
1037  }
1038  Array<PrimExpr> real_indices;
1039  for (size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1040  real_indices.push_back(out_index[j]);
1041  }
1042  auto idx = tvm::min(tvm::max(0, indices(indices_position)), axis_dim - 1);
1043  real_indices.push_back(idx);
1044  for (size_t j = axis + indices_len; j < out_index.size(); ++j) {
1045  real_indices.push_back(out_index[j]);
1046  }
1047  return a(real_indices);
1048  },
1049  name, tag);
1050  } else {
1051  return compute(
1052  out_shape,
1053  [&](const Array<Var>& out_index) {
1054  Array<PrimExpr> indices_position;
1055  for (size_t j = 0; j < static_cast<size_t>(batch_dims_); ++j) {
1056  indices_position.push_back(out_index[j]);
1057  }
1058  for (size_t j = axis; j < static_cast<size_t>(axis + indices_len - batch_dims_); ++j) {
1059  indices_position.push_back(out_index[j]);
1060  }
1061  Array<PrimExpr> real_indices;
1062  for (size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1063  real_indices.push_back(out_index[j]);
1064  }
1065  auto idx = tvm::min(tvm::max(0, indices(indices_position)), axis_dim - 1);
1066  real_indices.push_back(idx);
1067  for (size_t j = axis + indices_len - batch_dims_; j < out_index.size(); ++j) {
1068  real_indices.push_back(out_index[j]);
1069  }
1070  return a(real_indices);
1071  },
1072  name, tag);
1073  }
1074  } else if (mode == "fast") {
1075  LOG(WARNING) << "Fast mode segfaults when there are out-of-bounds indices. "
1076  "Make sure input indices are in bound";
1077  return compute(
1078  out_shape,
1079  [&](const Array<Var>& out_index) {
1080  Array<PrimExpr> indices_position;
1081  for (size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1082  indices_position.push_back(out_index[j]);
1083  }
1084  Array<PrimExpr> real_indices;
1085  for (size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1086  real_indices.push_back(out_index[j]);
1087  }
1088  real_indices.push_back(indices(indices_position));
1089  for (size_t j = axis + indices_len; j < out_index.size(); ++j) {
1090  real_indices.push_back(out_index[j]);
1091  }
1092  return a(real_indices);
1093  },
1094  name, tag);
1095  } else { // mode == "wrap"
1096  return compute(
1097  out_shape,
1098  [&](const Array<Var>& out_index) {
1099  Array<PrimExpr> indices_position;
1100  for (size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1101  indices_position.push_back(out_index[j]);
1102  }
1103  Array<PrimExpr> real_indices;
1104  for (size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1105  real_indices.push_back(out_index[j]);
1106  }
1107  auto idx = truncmod(truncmod(indices(indices_position), axis_dim) + axis_dim, axis_dim);
1108  real_indices.push_back(idx);
1109  for (size_t j = axis + indices_len; j < out_index.size(); ++j) {
1110  real_indices.push_back(out_index[j]);
1111  }
1112  return a(real_indices);
1113  },
1114  name, tag);
1115  }
1116 }
1117 
1129 inline Tensor where(const Tensor& condition, const Tensor& x, const Tensor& y,
1130  std::string name = "T_where", std::string tag = kBroadcast) {
1131  ICHECK_EQ(x->dtype, y->dtype) << "x and y must have the same dtype: " << x->dtype << " vs "
1132  << y->dtype;
1133  auto get_out_shape = [&]() {
1134  auto bh1 = detail::BroadcastShape(x->shape, y->shape);
1135  Array<PrimExpr> common_shape1(bh1.common_shape.begin(), bh1.common_shape.end());
1136  auto bh2 = detail::BroadcastShape(condition->shape, common_shape1);
1137  Array<PrimExpr> common_shape2(bh2.common_shape.begin(), bh2.common_shape.end());
1138  return common_shape2;
1139  };
1140 
1141  auto oshape = get_out_shape();
1142 
1143  auto c_bh = detail::BroadcastShape(condition->shape, oshape);
1144  auto x_bh = detail::BroadcastShape(x->shape, oshape);
1145  auto y_bh = detail::BroadcastShape(y->shape, oshape);
1146 
1147  auto select = [&](tvm::Array<tvm::tir::Var> ovars) {
1148  auto c = condition(InputIndexFromBroadcast(ovars, condition, c_bh.vars1, c_bh.all_vars));
1149  auto true_val = x(InputIndexFromBroadcast(ovars, x, x_bh.vars1, x_bh.all_vars));
1150  auto false_val = y(InputIndexFromBroadcast(ovars, y, y_bh.vars1, y_bh.all_vars));
1151  return tvm::tir::Select(c != 0, true_val, false_val);
1152  };
1153 
1154  return compute(oshape, select, name, tag);
1155 }
1156 
1169 inline Tensor repeat(const Tensor& x, int repeats, int axis, std::string name = "T_repeat",
1170  std::string tag = kBroadcast) {
1171  int ndim = static_cast<int>(x->shape.size());
1172  ICHECK(-ndim - 1 <= axis && axis <= ndim)
1173  << "repeat only accepts `axis` in [-data.ndim - 1, data.ndim]"
1174  << ", but got axis = " << axis << ", and data.ndim = " << ndim;
1175  ICHECK(repeats >= 1) << "repeat only accepts `repeats >= 1`"
1176  << ", but got repeats = " << repeats;
1177  if (axis < 0) {
1178  // Calculate offset from last dimension
1179  axis += ndim;
1180  }
1181  Array<PrimExpr> new_shape;
1182  for (size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1183  new_shape.push_back(x->shape[i]);
1184  }
1185  new_shape.push_back(repeats * x->shape[axis]);
1186  for (size_t i = axis + 1; i < x->shape.size(); ++i) {
1187  new_shape.push_back(x->shape[i]);
1188  }
1189 
1190  return compute(
1191  new_shape,
1192  [&](const Array<Var>& indices) {
1193  Array<PrimExpr> idx;
1194  for (size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1195  idx.push_back(indices[i]);
1196  }
1197  idx.push_back(indexdiv(indices[axis], repeats));
1198  for (size_t i = axis + 1; i < indices.size(); ++i) {
1199  idx.push_back(indices[i]);
1200  }
1201  return x(idx);
1202  },
1203  name, tag);
1204 }
1205 
1216 inline Tensor tile(const Tensor& x, Array<Integer> reps, std::string name = "T_tile",
1217  std::string tag = kBroadcast) {
1218  size_t ndim = x->shape.size();
1219  size_t rdim = reps.size();
1220  size_t tdim = (ndim > rdim) ? ndim : rdim;
1221  Array<PrimExpr> data_shape;
1222  Array<PrimExpr> reps_shape;
1223  Array<PrimExpr> new_shape;
1224  if (ndim == rdim) {
1225  for (size_t i = 0; i < ndim; ++i) {
1226  data_shape.push_back(x->shape[i]);
1227  reps_shape.push_back(reps[i]);
1228  }
1229  } else if (ndim > rdim) {
1230  for (size_t i = 0; i < ndim; ++i) data_shape.push_back(x->shape[i]);
1231  for (size_t i = 0; i < (ndim - rdim); ++i) reps_shape.push_back(1);
1232  for (size_t i = 0; i < rdim; ++i) reps_shape.push_back(reps[i]);
1233  } else {
1234  for (size_t i = 0; i < (rdim - ndim); ++i) data_shape.push_back(1);
1235  for (size_t i = 0; i < ndim; ++i) data_shape.push_back(x->shape[i]);
1236  for (size_t i = 0; i < rdim; ++i) reps_shape.push_back(reps[i]);
1237  }
1238  for (size_t i = 0; i < tdim; ++i) new_shape.push_back(data_shape[i] * reps_shape[i]);
1239 
1240  if (is_empty_shape(new_shape)) {
1241  return compute(
1242  new_shape, [&](const Array<Var>& indices) { return tvm::cast(x->dtype, 0); }, name, tag);
1243  } else {
1244  return compute(
1245  new_shape,
1246  [&](const Array<Var>& indices) {
1247  Array<PrimExpr> idx;
1248  if (ndim >= rdim) {
1249  for (size_t i = 0; i < ndim; ++i) idx.push_back(indexmod(indices[i], x->shape[i]));
1250  } else {
1251  for (size_t i = 0; i < ndim; ++i)
1252  idx.push_back(indexmod(indices[rdim - ndim + i], x->shape[i]));
1253  }
1254  return x(idx);
1255  },
1256  name, tag);
1257  }
1258 }
1259 
1271 inline Tensor dyn_tile(const Tensor& x, Array<PrimExpr> new_shape, size_t rdim,
1272  std::string name = "T_tile", std::string tag = kBroadcast) {
1273  size_t ndim = x->shape.size();
1274  if (is_empty_shape(new_shape)) {
1275  return compute(
1276  new_shape, [&](const Array<Var>& indices) { return tvm::cast(x->dtype, 0); }, name, tag);
1277  } else {
1278  return compute(
1279  new_shape,
1280  [&](const Array<Var>& indices) {
1281  Array<PrimExpr> idx;
1282  if (ndim >= rdim) {
1283  for (size_t i = 0; i < ndim; ++i) {
1284  idx.push_back(indexmod(indices[i], x->shape[i]));
1285  }
1286  } else {
1287  for (size_t i = 0; i < ndim; ++i) {
1288  idx.push_back(indexmod(indices[rdim - ndim + i], x->shape[i]));
1289  }
1290  }
1291  return x(idx);
1292  },
1293  name, tag);
1294  }
1295 }
1296 
1308 inline Tensor gather(const Tensor& data, int axis, const Tensor& indices,
1309  std::string name = "T_gather", std::string tag = kInjective) {
1310  size_t ndim_d = data->shape.size();
1311  size_t ndim_i = indices->shape.size();
1312  ICHECK_GE(ndim_d, 1) << "Cannot gather from a scalar.";
1313  ICHECK_EQ(ndim_d, ndim_i);
1314  if (axis < 0) {
1315  axis += ndim_d;
1316  }
1317  ICHECK_GE(axis, 0);
1318  ICHECK_LT(axis, ndim_d);
1319  if (indices->shape[axis].as<IntImmNode>()) {
1320  size_t indices_dim_i = static_cast<size_t>(GetConstInt(indices->shape[axis]));
1321  ICHECK_GE(indices_dim_i, 1);
1322  }
1323  ICHECK(indices->dtype.is_int() || indices->dtype.is_uint());
1324 
1325  Array<PrimExpr> out_shape;
1326  for (size_t i = 0; i < ndim_i; ++i) {
1327  out_shape.push_back(indices->shape[i]);
1328  }
1329 
1330  return compute(
1331  out_shape,
1332  [&](const Array<Var>& out_index) {
1333  Array<PrimExpr> indices_position;
1334  for (size_t i = 0; i < ndim_i; ++i) {
1335  indices_position.push_back(out_index[i]);
1336  }
1337  Array<PrimExpr> real_indices;
1338  for (size_t i = 0; i < ndim_i; ++i) {
1339  if (i == static_cast<size_t>(axis)) {
1340  real_indices.push_back(indices(indices_position));
1341  } else {
1342  real_indices.push_back(indices_position[i]);
1343  }
1344  }
1345  return data(real_indices);
1346  },
1347  name, tag);
1348 }
1349 
1361 inline Tensor gather_nd(const Tensor& data, const Tensor& indices, int batch_dims = 0,
1362  std::string name = "T_gather_nd", std::string tag = kInjective) {
1363  size_t ndim_d = data->shape.size();
1364  size_t ndim_i = indices->shape.size();
1365  ICHECK_GE(ndim_i, 1) << "indices tensor must have at least 1 dimensions";
1366  size_t indices_dim0 = static_cast<size_t>(GetConstInt(indices->shape[0]));
1367  ICHECK_LE(indices_dim0, ndim_d) << "dim 0 of indices tensor must be no more "
1368  << "than dimensions of data tensor";
1369  Array<PrimExpr> out_shape;
1370  for (size_t i = 1; i < ndim_i; ++i) {
1371  out_shape.push_back(indices->shape[i]);
1372  }
1373  for (size_t i = indices_dim0 + batch_dims; i < ndim_d; ++i) {
1374  out_shape.push_back(data->shape[i]);
1375  }
1376  return compute(
1377  out_shape,
1378  [&](const Array<Var>& out_index) {
1379  Array<PrimExpr> indices_position;
1380  indices_position.push_back(0);
1381  for (size_t i = 0; i < ndim_i - 1; ++i) {
1382  indices_position.push_back(out_index[i]);
1383  }
1384  Array<PrimExpr> real_indices;
1385  for (size_t i = 0; i < static_cast<size_t>(batch_dims); ++i) {
1386  real_indices.push_back(out_index[i]);
1387  }
1388  for (size_t i = 0; i < indices_dim0; ++i) {
1389  indices_position.Set(0, make_const(DataType::Int(32), i));
1390  if (indices->dtype.is_int() || indices->dtype.is_uint()) {
1391  real_indices.push_back(indices(indices_position));
1392  } else {
1393  real_indices.push_back(tvm::cast(tvm::DataType::Int(32), indices(indices_position)));
1394  }
1395  }
1396  if (real_indices.size() == ndim_d) {
1397  return data(real_indices);
1398  }
1399  for (size_t i = ndim_i - 1; i < out_index.size(); ++i) {
1400  real_indices.push_back(out_index[i]);
1401  }
1402  return data(real_indices);
1403  },
1404  name, tag);
1405 }
1406 
1423  bool trans_a = false, bool trans_b = false,
1424  std::string name = "T_matmul", std::string tag = kMatMul) {
1425  tvm::Array<tvm::PrimExpr> output_shape{A->shape[trans_a ? 1 : 0], B->shape[trans_b ? 0 : 1]};
1426  auto k = tvm::te::reduce_axis(tvm::Range{0, A->shape[trans_a ? 0 : 1]}, "k");
1427  auto l = [&](tvm::tir::Var i, tvm::tir::Var j) {
1428  return tvm::sum((trans_a ? A[k][i] : A[i][k]) * (trans_b ? B[j][k] : B[k][j]), {k});
1429  };
1430  return tvm::te::compute(output_shape, l, name, tag);
1431 }
1432 
1444 inline Tensor tensordot(const Tensor& A, const tvm::te::Tensor& B, int axes = 2,
1445  std::string name = "T_tensordot", std::string tag = kMatMul) {
1446  ICHECK_GE(A->shape.size(), axes);
1447  ICHECK_GE(B->shape.size(), axes);
1448 
1449  Array<PrimExpr> output_shape(A->shape.begin(), A->shape.end() + (-axes));
1450  for (auto it = B->shape.begin() + axes; it != B->shape.end(); ++it) output_shape.push_back(*it);
1451 
1452  Array<IterVar> iter_vars;
1453  for (int i = 0; i < axes; ++i)
1454  iter_vars.push_back(reduce_axis(Range(0, B->shape[i]), "k" + std::to_string(i)));
1455 
1456  auto func = [&A, &B, &iter_vars, axes](const Array<Var>& input_indices) {
1457  Array<PrimExpr> A_indices(input_indices.begin(),
1458  input_indices.begin() + (A->shape.size() - axes));
1459  for (auto& v : iter_vars) A_indices.push_back(v);
1460 
1461  Array<PrimExpr> B_indices;
1462  for (auto& v : iter_vars) B_indices.push_back(v);
1463 
1464  auto it = input_indices.begin() + (A->shape.size() - axes);
1465  for (; it != input_indices.end(); ++it) B_indices.push_back(*it);
1466 
1467  // Some passes don't like reductions with empty axis, so avoid it here
1468  if (iter_vars.empty()) {
1469  return A(A_indices) * B(B_indices);
1470  } else {
1471  return sum(A(A_indices) * B(B_indices), iter_vars);
1472  }
1473  };
1474 
1475  return compute(output_shape, func, name, tag);
1476 }
1477 
1490 inline Tensor tensordot(const Tensor& A, const tvm::te::Tensor& B, Array<PrimExpr> A_axes,
1491  Array<PrimExpr> B_axes, std::string name = "T_tensordot",
1492  std::string tag = kMatMul) {
1493  ICHECK_EQ(A_axes.size(), B_axes.size());
1494 
1495  auto A_axes_val = GetConstIntValues(A_axes, "A_axes");
1496  auto B_axes_val = GetConstIntValues(B_axes, "B_axes");
1497 
1498  Array<PrimExpr> output_shape;
1499  for (unsigned i = 0; i < A->shape.size(); ++i)
1500  if (std::find(A_axes_val.begin(), A_axes_val.end(), i) == A_axes_val.end())
1501  output_shape.push_back(A->shape[i]);
1502  for (unsigned i = 0; i < B->shape.size(); ++i)
1503  if (std::find(B_axes_val.begin(), B_axes_val.end(), i) == B_axes_val.end())
1504  output_shape.push_back(B->shape[i]);
1505 
1506  Array<IterVar> iter_vars;
1507  for (unsigned i = 0; i < B_axes_val.size(); ++i)
1508  iter_vars.push_back(reduce_axis(Range(0, B->shape[B_axes_val[i]]), "k" + std::to_string(i)));
1509 
1510  auto func = [&A, &B, &iter_vars, A_axes_val, B_axes_val](const Array<Var>& input_indices) {
1511  int idx_input = 0;
1512  Array<PrimExpr> A_indices;
1513  for (unsigned i = 0; i < A->shape.size(); ++i) {
1514  auto axes_pos = std::find(A_axes_val.begin(), A_axes_val.end(), i);
1515  if (axes_pos == A_axes_val.end()) {
1516  A_indices.push_back(input_indices[idx_input++]);
1517  } else {
1518  A_indices.push_back(iter_vars[axes_pos - A_axes_val.begin()]);
1519  }
1520  }
1521 
1522  Array<PrimExpr> B_indices;
1523  for (unsigned i = 0; i < B->shape.size(); ++i) {
1524  auto axes_pos = std::find(B_axes_val.begin(), B_axes_val.end(), i);
1525  if (axes_pos == B_axes_val.end()) {
1526  B_indices.push_back(input_indices[idx_input++]);
1527  } else {
1528  B_indices.push_back(iter_vars[axes_pos - B_axes_val.begin()]);
1529  }
1530  }
1531  return sum(A(A_indices) * B(B_indices), iter_vars);
1532  };
1533  return compute(output_shape, func, name, tag);
1534 }
1535 
1536 inline Tensor arange(const PrimExpr& start, const PrimExpr& stop, const PrimExpr& step,
1537  DataType dtype, std::string name = "T_arange", std::string tag = kInjective) {
1538  PrimExpr num_elem = tvm::cast(
1539  tvm::DataType::Int(32), tvm::ceil(tvm::cast(tvm::DataType::Float(32), stop - start) / step));
1541  return compute(
1542  {num_elem},
1543  [&](const Array<Var>& indices) { return tvm::cast(dtype, start + step * indices[0]); }, name,
1544  tag);
1545 }
1546 
1557 inline Array<Tensor> meshgrid(const Array<Tensor>& inputs, const std::string& indexing,
1558  std::string name = "T_meshgrid", std::string tag = kInjective) {
1559  const bool cartesian_indexing = indexing == "xy" && inputs.size() >= 2;
1560  Array<PrimExpr> out_shape;
1561  for (size_t i = 0; i < inputs.size(); ++i) {
1562  const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1563  out_shape.push_back(inputs[src_index]->shape.size() == 0 ? 1 : inputs[src_index]->shape[0]);
1564  }
1565  Array<Tensor> result;
1566  for (size_t i = 0; i < inputs.size(); ++i) {
1567  result.push_back(compute(
1568  out_shape,
1569  [&](const Array<Var>& indices) {
1570  const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1571  auto ndim = inputs[i]->GetShape().size();
1572  Array<PrimExpr> real_indices = {};
1573  if (ndim > 0) {
1574  real_indices = {indices[src_index]};
1575  }
1576  return inputs[i](real_indices);
1577  },
1578  name, tag));
1579  }
1580  return result;
1581 }
1582 
1593 inline Tensor layout_transform(const Tensor& src, const std::string& src_layout,
1594  const std::string& dst_layout,
1595  const std::string schedule_rule = "None",
1596  const std::string name = "T_layout_trans",
1597  const std::string tag = kInjective) {
1598  Layout src_layout_struct(src_layout);
1599  Layout dst_layout_struct(dst_layout);
1600 
1601  if (src_layout_struct.Equals(dst_layout_struct)) {
1602  return src;
1603  }
1604 
1605  ICHECK(src_layout_struct.defined() && dst_layout_struct.defined())
1606  << "cannot convert from/to undefined layout";
1607 
1608  auto layout_converter = tir::BijectiveLayout(src_layout_struct, dst_layout_struct);
1609  ICHECK(layout_converter.defined())
1610  << "cannot convert from " << src_layout << " to " << dst_layout;
1611 
1612  Array<PrimExpr> dst_shape = layout_converter.ForwardShape(src->shape);
1613 
1614  Map<String, ObjectRef> attrs = {{"schedule_rule", String(schedule_rule)},
1615  // Information about layouts needed for the schedule rule
1616  {"src_layout", String(src_layout)},
1617  {"dst_layout", String(dst_layout)},
1618  {"input_shape", src->shape}};
1619 
1620  return compute(
1621  dst_shape,
1622  [&](const Array<Var>& dst_indices) {
1623  Array<PrimExpr> dst_indices_expr(dst_indices.begin(), dst_indices.end());
1624  Array<PrimExpr> src_indices = layout_converter.BackwardIndex(dst_indices_expr);
1625  PrimExpr in_range = PrimExpr(1) > PrimExpr(0); // init with dtype=bool and value=true
1626  for (size_t i = 0; i < src.ndim(); ++i) {
1627  in_range = in_range && (src_indices[i] < src->shape[i]);
1628  }
1629  return if_then_else(in_range, src(src_indices), tvm::cast(src->dtype, PrimExpr(0)));
1630  },
1631  name, tag, attrs);
1632 }
1633 
1636  std::vector<std::string>* axes) {
1637  int32_t factor = 0;
1638  std::string axis = "";
1639  for (char c : std::string(layout)) {
1640  if (c >= 'A' && c <= 'z') {
1641  axis += c;
1642  if (factor != 0) {
1643  shape->push_back(factor);
1644  factor = 0;
1645  }
1646  } else if (c >= '0' && c <= '9') {
1647  factor = factor * 10 + c - '0';
1648  if (!axis.empty()) {
1649  axes->push_back(axis);
1650  axis = "";
1651  }
1652  } else {
1653  LOG(FATAL) << "Invalid layout " << layout;
1654  }
1655  }
1656  if (!axis.empty()) {
1657  axes->push_back(axis);
1658  }
1659 }
1660 
1671 inline Tensor auto_scheduler_layout_transform(const Tensor& src, const String& src_layout,
1672  const String& dst_layout,
1673  const String name = "T_auto_scheduler_layout_trans",
1674  const String tag = kInjective) {
1675  Array<PrimExpr> src_shape;
1676  std::vector<std::string> src_axes;
1677  Array<PrimExpr> dst_shape;
1678  std::vector<std::string> dst_axes;
1679 
1680  parse_auto_scheduler_layout(src_layout, &src_shape, &src_axes);
1681  parse_auto_scheduler_layout(dst_layout, &dst_shape, &dst_axes);
1682  return compute(
1683  dst_shape,
1684  [&](const Array<Var>& dst_indices) {
1685  Array<PrimExpr> dst_indices_expr(dst_indices.begin(), dst_indices.end());
1686  Array<PrimExpr> src_indices;
1687  for (const std::string& src_axis : src_axes) {
1688  PrimExpr src_index = 0;
1689  CHECK_EQ(dst_indices_expr.size(), dst_axes.size());
1690  for (size_t i = 0; i < dst_axes.size(); ++i) {
1691  if (dst_axes[i] == src_axis) {
1692  src_index = src_index * dst_shape[i] + dst_indices_expr[i];
1693  }
1694  }
1695  src_indices.push_back(src_index);
1696  }
1697  return src(src_indices);
1698  },
1699  name, tag);
1700 }
1701 
1738 inline Tensor meta_schedule_layout_transform(const Tensor& src, const tir::IndexMap& index_map,
1739  const String name = "T_meta_schedule_layout_trans",
1740  const String tag = kInjective) {
1741  Array<Range> iter_domain;
1742  iter_domain.reserve(src->shape.size());
1743  for (const PrimExpr& e : src->shape) {
1744  iter_domain.push_back(Range::FromMinExtent(make_zero(e->dtype), e));
1745  }
1746  Array<PrimExpr> post_transform_shape = index_map->MapShape(src->shape);
1747  return compute(
1748  post_transform_shape,
1749  [src, inv = index_map.Inverse(iter_domain)](const Array<Var>& indices) -> PrimExpr {
1750  return src(inv->MapIndices(Array<PrimExpr>{indices.begin(), indices.end()}));
1751  },
1752  name, tag);
1753 }
1754 
1763 inline Tensor shape(const Tensor& src, DataType dtype, const std::string name = "T_shape",
1764  const std::string tag = kInjective) {
1765  int ndim = static_cast<int>(src->shape.size());
1766  Array<PrimExpr> out_shape{ndim};
1767  return compute(
1768  out_shape,
1769  [&](const Array<Var>& indices) {
1770  auto idx = indices[0];
1771  PrimExpr ret = 0;
1772  for (int i = 0; i < ndim; ++i) {
1773  ret = tvm::if_then_else(idx == i, src->shape[i], ret);
1774  }
1775  return tvm::cast(dtype, ret);
1776  },
1777  name, tag);
1778 }
1779 
1788 inline Tensor ndarray_size(const Tensor& src, const DataType& dtype,
1789  const std::string& name = "ndarray_size",
1790  const std::string& tag = kInjective) {
1791  int ndim = static_cast<int>(src->shape.size());
1792  Array<PrimExpr> out_ndarray_size = {};
1793  return compute(
1794  out_ndarray_size,
1795  [&](const Array<Var>& indices) {
1796  PrimExpr ret = 1;
1797  for (int i = 0; i < ndim; ++i) {
1798  ret *= src->shape[i];
1799  }
1800  return tvm::cast(dtype, ret);
1801  },
1802  name, tag);
1803 }
1804 
1819 inline Tensor one_hot(const Tensor& indices, const PrimExpr on_value, const PrimExpr off_value,
1820  int depth, int axis, const DataType& dtype,
1821  Array<PrimExpr> oshape = Array<PrimExpr>(),
1822  const std::string name = "T_one_hot", const std::string tag = kInjective) {
1823  int true_axis = (axis == -1) ? indices->shape.size() : axis;
1824  if (oshape.size() == 0) {
1825  int ndim = indices->shape.size() + 1;
1826  int indices_index = 0;
1827  for (int i = 0; i < ndim; i++) {
1828  if (i == true_axis) {
1829  oshape.push_back(Integer(depth));
1830  } else {
1831  oshape.push_back(indices->shape[indices_index++]);
1832  }
1833  }
1834  }
1835 
1836  PrimExpr on_value_cast = cast(dtype, on_value);
1837  PrimExpr off_value_cast = cast(dtype, off_value);
1838  return compute(
1839  oshape,
1840  [&](const Array<Var>& iter_vars) {
1841  Array<Var> indices_indices;
1842  for (size_t i = 0; i < iter_vars.size(); i++) {
1843  if (static_cast<int>(i) == true_axis) {
1844  continue;
1845  }
1846 
1847  indices_indices.push_back(iter_vars[i]);
1848  }
1849 
1850  auto idx = iter_vars[true_axis];
1851  return tir::Select(indices(indices_indices) == idx, on_value_cast, off_value_cast);
1852  },
1853  name, tag);
1854 }
1855 
1866 inline Tensor sparse_to_dense(const Tensor& sparse_indices, const Array<PrimExpr>& output_shape,
1867  const Tensor& sparse_values, const PrimExpr& default_value,
1868  const std::string name = "T_sparse_to_dense",
1869  const std::string tag = kInjective) {
1870  ICHECK(sparse_indices->dtype.is_int()) << "sparse_indices only accepts integer values";
1871  ICHECK_LE(sparse_indices->shape.size(), 3)
1872  << "sparse_indices tensor should be 0D, 1D, or 2D only";
1873  ICHECK_LE(sparse_values->shape.size(), 2) << "sparse_values tensor should be 0D or 1D only";
1874 
1875  const auto rank_sparse_indices = static_cast<int>(sparse_indices->shape.size());
1876  Array<PrimExpr> oshape;
1877  for (auto l : output_shape) {
1878  oshape.push_back(l);
1879  }
1880  return compute(
1881  oshape,
1882  [&](const Array<Var>& indices) {
1883  PrimExpr ret = default_value;
1884  if (0 == rank_sparse_indices) {
1885  ret = if_then_else(indices[0] == sparse_indices(), sparse_values(), ret);
1886  } else if (1 == rank_sparse_indices) {
1887  for (int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
1888  ret = if_then_else(indices[0] == sparse_indices[j], sparse_values[j], ret);
1889  }
1890  } else {
1891  for (int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
1892  PrimExpr aggregate_condition;
1893  for (int k = 0; k < GetConstInt(sparse_indices->shape[1]); k++) {
1894  PrimExpr comparision = indices[k] == sparse_indices[j][k];
1895  aggregate_condition = 0 == k ? comparision : aggregate_condition && comparision;
1896  }
1897  ret = if_then_else(aggregate_condition, sparse_values[j], ret);
1898  }
1899  }
1900  return ret;
1901  },
1902  name, tag);
1903 }
1904 
1917 inline Tensor matrix_set_diag(const Tensor& input, const Tensor& diagonal, int k1, int k2,
1918  bool super_diag_right_align, bool sub_diag_right_align,
1919  const std::string name = "T_matrix_set_diag",
1920  const std::string tag = kInjective) {
1921  size_t ndim = input->shape.size() - 1;
1922 
1923  bool only_one_diagonal = k1 == k2;
1924 
1925  return compute(
1926  input->shape,
1927  [&](const Array<Var>& iter_vars) {
1928  auto get_diag = [&]() {
1929  Array<PrimExpr> diagonal_indices;
1930  PrimExpr k, offset = 0;
1931  for (size_t i = 0; i < ndim - 1; i++) {
1932  diagonal_indices.push_back(iter_vars[i]);
1933  }
1934  if (only_one_diagonal) {
1935  k = k1;
1936  } else {
1937  // Determining which diagonal/sub-diagonal/super-diagonal it is
1938  k = iter_vars[ndim] - iter_vars[ndim - 1];
1939  diagonal_indices.push_back(k2 - k);
1940 
1941  // Calculating the offset in diagonal tensor for this diagonal
1942  auto get_offset = [&](PrimExpr M, PrimExpr N) {
1943  // offset = max_diagonal_length - diagonal_length
1944  return diagonal->shape[diagonal->shape.size() - 1] - if_then_else(M < N, M, N);
1945  };
1946  offset = if_then_else(
1947  k >= 0,
1948  super_diag_right_align ? get_offset(input->shape[ndim] - k, input->shape[ndim - 1])
1949  : 0,
1950  sub_diag_right_align ? get_offset(input->shape[ndim], input->shape[ndim - 1] + k)
1951  : 0);
1952  }
1953  diagonal_indices.push_back(if_then_else(k >= 0, iter_vars[ndim - 1], iter_vars[ndim]) +
1954  offset);
1955  return diagonal(diagonal_indices);
1956  };
1957  return if_then_else((PrimExpr)iter_vars[ndim] - iter_vars[ndim - 1] >= k1,
1958  if_then_else((PrimExpr)iter_vars[ndim] - iter_vars[ndim - 1] <= k2,
1959  get_diag(), input(iter_vars)),
1960  input(iter_vars));
1961  },
1962  name, tag);
1963 }
1964 
1973 inline Tensor adv_index(const Tensor& data, const Array<Tensor>& indices,
1974  const std::string name = "advanced_index",
1975  const std::string tag = kInjective) {
1976  ICHECK_LE(indices.size(), data->shape.size()) << "too many indices for data!";
1977  Array<PrimExpr> oshape;
1978  Array<PrimExpr> broadcast_shape;
1979  Array<Tensor> bindices;
1980 
1981  broadcast_shape = indices[0]->shape;
1982  for (size_t i = 1; i < indices.size(); ++i) {
1983  auto bh = detail::BroadcastShape(broadcast_shape, indices[i]->shape);
1984  broadcast_shape = Array<PrimExpr>(bh.common_shape.begin(), bh.common_shape.end());
1985  }
1986  if (indices.size() == 1) {
1987  // quick path
1988  bindices = indices;
1989  } else {
1990  // Do broadcast for indices
1991  for (size_t i = 0; i < indices.size(); ++i) {
1992  bindices.push_back(broadcast_to(indices[i], broadcast_shape));
1993  }
1994  }
1995 
1996  for (const auto& dim : broadcast_shape) {
1997  oshape.push_back(dim);
1998  }
1999  for (size_t i = indices.size(); i < data->shape.size(); ++i) {
2000  oshape.push_back(data->shape[i]);
2001  }
2002 
2003  return compute(
2004  oshape,
2005  [&](const Array<Var>& iter_var) {
2006  Array<PrimExpr> tensor_indices;
2007  for (size_t i = 0; i < broadcast_shape.size(); ++i) {
2008  tensor_indices.push_back(iter_var[i]);
2009  }
2010 
2011  Array<PrimExpr> real_indices;
2012  for (size_t i = 0; i < bindices.size(); ++i) {
2013  real_indices.push_back(bindices[i](tensor_indices));
2014  }
2015  for (size_t i = broadcast_shape.size(); i < iter_var.size(); ++i) {
2016  real_indices.push_back(iter_var[i]);
2017  }
2018 
2019  return data(real_indices);
2020  },
2021  name, tag);
2022 }
2023 
2024 } // namespace topi
2025 } // namespace tvm
2026 #endif // TVM_TOPI_TRANSFORM_H_
Broadcast op constructions.
Constant integer literals in the program.
Definition: expr.h:491
int64_t value
the Internal value.
Definition: expr.h:494
Managed reference class to IntImmNode.
Definition: expr.h:520
Container of constant int that adds more constructors.
Definition: expr.h:622
Reference to PrimExprNode.
Definition: expr.h:114
DataType dtype() const
Definition: expr.h:128
Range constainer
Definition: expr.h:715
static Range FromMinExtent(PrimExpr min, PrimExpr extent, Span span=Span())
construct a new range with min and extent The corresponding constructor is removed,...
Analyzer that contains bunch of sub-analyzers.
Definition: analyzer.h:600
PrimExpr Simplify(const PrimExpr &expr, int steps=2)
Simplify expr.
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
void reserve(int64_t n)
Make sure the list has the capacity of at least n.
Definition: array.h:569
iterator end() const
Definition: array.h:390
void push_back(const T &item)
push a new item to the back of the list
Definition: array.h:457
void Set(int64_t i, T value)
set i-th element of the array.
Definition: array.h:621
iterator begin() const
Definition: array.h:387
size_t size() const
Definition: array.h:420
Runtime primitive data type.
Definition: data_type.h:42
static DataType Float(int bits, int lanes=1)
Construct an float type.
Definition: data_type.h:190
static DataType Int(int bits, int lanes=1)
Construct an int type.
Definition: data_type.h:176
Map container of NodeRef->NodeRef in DSL graph. Map implements copy on write semantics,...
Definition: map.h:1271
bool defined() const
Definition: object.h:548
const ObjectType * as() const
Try to downcast the internal Object to a raw pointer of a corresponding type.
Definition: object.h:892
Reference to string objects.
Definition: string.h:98
Tensor structure representing a possible input, or intermediate computation result.
Definition: tensor.h:102
size_t ndim() const
Definition: tensor.h:214
Bijective function mapping for data layout transformation. Given two Layout, BijectiveLayout build an...
Definition: data_layout.h:332
Definition: index_map.h:177
IndexMap Inverse(Array< Range > initial_ranges) const
Generate the inverse mapping.
Managed reference to LayoutNode.
Definition: data_layout.h:123
bool Equals(const Layout &rhs) const
Whether the two layouts are equal.
Definition: data_layout.h:278
Managed reference to SelectNode.
Definition: expr.h:609
a named variable in TIR
Definition: var.h:88
Utility functions for handling constants in TVM expressions.
Layout expression to describe the data organization of a tensor. And BijectiveLayout to mapping two d...
Detail broadcast.
Defines a remapping of buffer indices.
Tensor expression language DSL.
Definition: extracted_task.h:33
IterVar reduce_axis(Range dom, std::string name="rv")
Create a new IterVar for reduction operations.
Tensor compute(Array< PrimExpr > shape, FCompute fcompute, std::string name="tensor", std::string tag="", Map< String, ObjectRef > attrs={})
Construct a new tensor by computing over shape, using the computation rule: result_tensor[axis] = fco...
PrimExpr make_const(DataType t, ValueType value, Span span=Span())
Make a const value with certain data type.
Definition: op.h:960
PrimExpr make_zero(DataType t, Span span=Span())
Make a const zero expr.
Definition: op.h:968
Tensor sequence_mask(const Tensor &data, const Tensor &valid_length, double mask_value, int axis, std::string name="T_sequence_mask", std::string tag=kInjective)
Mask the out-of-boundary elements of each sequence.
Definition: transform.h:943
Tensor gather_nd(const Tensor &data, const Tensor &indices, int batch_dims=0, std::string name="T_gather_nd", std::string tag=kInjective)
Gather elements from a n-dimension array.
Definition: transform.h:1361
constexpr auto kBroadcast
Definition: tags.h:36
Tensor transpose(const Tensor &x, Array< Integer > axes, std::string name="T_transpose", std::string tag=kInjective)
Permute the dimensions of an array.
Definition: transform.h:196
Tensor arange(const PrimExpr &start, const PrimExpr &stop, const PrimExpr &step, DataType dtype, std::string name="T_arange", std::string tag=kInjective)
Definition: transform.h:1536
Tensor strided_slice(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, std::string slice_mode="end", std::string name="T_strided_slice", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:812
constexpr auto kInjective
Definition: tags.h:33
Tensor dynamic_strided_slice(const Tensor &x, const Array< PrimExpr > &begin, const Array< PrimExpr > &end, const Array< PrimExpr > &strides, std::string name="T_dynamic_strided_slice", std::string tag=kInjective)
strided_slice of a tensor where begin/end/stride can be mixed static and dynamic
Definition: transform.h:648
Tensor sliding_window(const Tensor &x, int axis, Array< Integer > window_shape, Array< Integer > strides, std::string name="T_sliding_window", std::string tag="")
Creates an operation to slide a window over the input x.
Definition: transform.h:68
Tensor reshape(const Tensor &x, Array< PrimExpr > newshape, std::string name="T_reshape", std::string tag=kInjective)
Reshape a tensor.
Definition: transform.h:320
Tensor one_hot(const Tensor &indices, const PrimExpr on_value, const PrimExpr off_value, int depth, int axis, const DataType &dtype, Array< PrimExpr > oshape=Array< PrimExpr >(), const std::string name="T_one_hot", const std::string tag=kInjective)
Returns a one-hot tensor where the locations repsented by indices take value on_value,...
Definition: transform.h:1819
Tensor meta_schedule_layout_transform(const Tensor &src, const tir::IndexMap &index_map, const String name="T_meta_schedule_layout_trans", const String tag=kInjective)
Transform the meta-schedule generated layout according to TIR's IndexMap.
Definition: transform.h:1738
Array< Tensor > meshgrid(const Array< Tensor > &inputs, const std::string &indexing, std::string name="T_meshgrid", std::string tag=kInjective)
Produce grids by expanding input over dimensions defined by other inputs.
Definition: transform.h:1557
Tensor tile(const Tensor &x, Array< Integer > reps, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1216
tvm::te::Tensor broadcast_to(const tvm::te::Tensor &t, const tvm::Array< tvm::PrimExpr > &output_shape, std::string name="T_broadcast_to", std::string tag=kBroadcast)
Creates an operation that broadcasts a tensor into a compatible shape according to numpy's rules.
Definition: broadcast.h:48
Tensor dyn_tile(const Tensor &x, Array< PrimExpr > new_shape, size_t rdim, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1271
Tensor adv_index(const Tensor &data, const Array< Tensor > &indices, const std::string name="advanced_index", const std::string tag=kInjective)
Numpy style advanced indexing with tensor.
Definition: transform.h:1973
Tensor concatenate(const Array< Tensor > &inputs, int axis=0, std::string name="T_concat", std::string tag=kInjective)
Join a sequence of tensors along an existing axis.
Definition: transform.h:466
void parse_auto_scheduler_layout(const String &layout, Array< PrimExpr > *shape, std::vector< std::string > *axes)
Utility function for auto_scheduler_layout_transform.
Definition: transform.h:1635
Tensor cast(const Tensor &x, DataType type, std::string name="T_cast", std::string tag=kElementWise)
Cast each element of x to the given type. If expr is scalar and type is a corresponding vector type,...
Definition: elemwise.h:281
Tensor expand_dims(const Tensor &x, int axis, int num_newaxis=1, std::string name="T_expand_dims", std::string tag=kBroadcast)
Creates an operation to insert new dimensions of length 1.
Definition: transform.h:147
Tensor squeeze(const Tensor &x, Array< Integer > axis, bool atleast1d=false, std::string name="T_squeeze", std::string tag=kInjective)
Remove size 1 dimensions from the shape of a tensor. The removed dimensions must have a constant size...
Definition: transform.h:403
Tensor sparse_to_dense(const Tensor &sparse_indices, const Array< PrimExpr > &output_shape, const Tensor &sparse_values, const PrimExpr &default_value, const std::string name="T_sparse_to_dense", const std::string tag=kInjective)
Get a dense tensor.
Definition: transform.h:1866
Tensor unravel_index(const Tensor &x, const Tensor &shape, std::string name="T_unravel", std::string tag=kInjective)
Converts a flat index or array of flat indices into a tuple of coordinate arrays.
Definition: transform.h:355
Tensor auto_scheduler_layout_transform(const Tensor &src, const String &src_layout, const String &dst_layout, const String name="T_auto_scheduler_layout_trans", const String tag=kInjective)
Transform the auto-scheduler generated layout according to src_layout and dst_layout.
Definition: transform.h:1671
Tensor ndarray_size(const Tensor &src, const DataType &dtype, const std::string &name="ndarray_size", const std::string &tag=kInjective)
Get the size of input tensor.
Definition: transform.h:1788
Tensor layout_transform(const Tensor &src, const std::string &src_layout, const std::string &dst_layout, const std::string schedule_rule="None", const std::string name="T_layout_trans", const std::string tag=kInjective)
Transform the layout according to src_layout and dst_layout.
Definition: transform.h:1593
Tensor take(const Tensor &a, const Tensor &indices, int batch_dims, std::string mode="clip", std::string name="T_take", std::string tag=kInjective)
Take elements from an flattened input array when axis is None.
Definition: transform.h:895
constexpr auto kMatMul
Definition: tags.h:37
Tensor reverse_sequence(const Tensor &x, const Tensor &seq_lengths, int seq_axis=1, int batch_axis=0, std::string name="T_reverse_sequence", std::string tag=kInjective)
Reverse the tensor for variable length slices. Input is first sliced along batch axis and then elemen...
Definition: transform.h:255
Tensor sum(const Tensor &data, const Array< Integer > &axis, bool keepdims=false, bool atleast1d=false)
Creates an operation that sums array elements over a given axis.
Definition: reduction.h:326
Tensor tensordot(const Tensor &A, const tvm::te::Tensor &B, int axes=2, std::string name="T_tensordot", std::string tag=kMatMul)
A generalization of matrix multiplication to tensors.
Definition: transform.h:1444
Tensor stack(const Array< Tensor > &inputs, int axis=0, std::string name="T_stack", std::string tag=kInjective)
Join a sequence of tensors along a new axis.
Definition: transform.h:525
Array< Tensor > split_sections(const Tensor &x, int num_sections, int axis, std::string name="T_split_sections", std::string tag=kInjective)
Split a tensor into a number of sub-tensors.
Definition: transform.h:853
Tensor strided_slice_with_axes(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, std::string slice_mode="end", std::string name="T_strided_slice_with_axes", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:766
tvm::te::Tensor matmul(const tvm::te::Tensor &A, const tvm::te::Tensor &B, bool trans_a=false, bool trans_b=false, std::string name="T_matmul", std::string tag=kMatMul)
Creates an operation that calculates a matrix multiplication (row-major notation): A(i,...
Definition: transform.h:1422
Tensor matrix_set_diag(const Tensor &input, const Tensor &diagonal, int k1, int k2, bool super_diag_right_align, bool sub_diag_right_align, const std::string name="T_matrix_set_diag", const std::string tag=kInjective)
Returns a tensor with the diagonal of input tensor replaced with the provided diagonals.
Definition: transform.h:1917
Tensor where(const Tensor &condition, const Tensor &x, const Tensor &y, std::string name="T_where", std::string tag=kBroadcast)
Return the elements, either from x or y, depending on the condition.
Definition: transform.h:1129
Tensor shape(const Tensor &src, DataType dtype, const std::string name="T_shape", const std::string tag=kInjective)
Get the shape of input tensor.
Definition: transform.h:1763
Tensor gather(const Tensor &data, int axis, const Tensor &indices, std::string name="T_gather", std::string tag=kInjective)
Gather values along given axis from given indices.
Definition: transform.h:1308
Array< Tensor > split(const Tensor &x, Array< PrimExpr > split_indices, int axis, std::string name="T_split", std::string tag=kInjective)
Split a tensor into multiple sub-tensors.
Definition: transform.h:571
Tensor repeat(const Tensor &x, int repeats, int axis, std::string name="T_repeat", std::string tag=kBroadcast)
Creates an operation to repeat elements of an array.
Definition: transform.h:1169
Array< PrimExpr > StridedSliceOutputShape(const Array< PrimExpr > &ishape, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, const std::string &slice_mode)
Calcluate the output shape of strided_slice, the entry point for Relay type relation.
Definition: transform.h:738
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
PrimExpr ret(PrimExpr value, Span span=Span())
Return the value.
PrimExpr max(PrimExpr a, PrimExpr b, Span span=Span())
take maximum of two values
PrimExpr truncmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder of truncdiv
PrimExpr if_then_else(PrimExpr cond, PrimExpr true_value, PrimExpr false_value, Span span=Span())
Conditional expression.
PrimExpr cast(const DataType &t, PrimExpr value, Span span=Span())
cast value to type.
PrimExpr max_value(const DataType &dtype, Span span=Span())
PrimExpr ceil(PrimExpr x, Span span=Span())
Calculate ceil(x)
PrimExpr indexdiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b) where a and b are non-negative.
PrimExpr min(PrimExpr a, PrimExpr b, Span span=Span())
take minimum of two values
PrimExpr indexmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder floor(a / b) where a and b are non-negative.
PrimExpr floordiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b)
PrimExpr sum(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
sum of source expression over axis
Operation node can generate one or multiple Tensors.
Index ravel and unraval operations.
Utility functions for strided_slice op.
External function interface to rocBLAS libraries.
Utility functions for handling tensor.