24 #ifndef TVM_RELAY_ATTRS_NN_H_
25 #define TVM_RELAY_ATTRS_NN_H_
68 .describe(
"Specifies the stride of the convolution.");
72 "If padding is non-zero, then the input is implicitly zero-padded"
73 "on both sides for padding number of points");
78 .describe(
"Specifies the dilation rate to use for dilated convolution.");
80 "Currently unused but may be added in the future.");
83 "The number of output channels in the convolution."
84 " If it is not set, inferred by shape of the weight.")
85 .set_default(NullValue<IndexExpr>());
87 .describe(
"Specifies the dimensions of the convolution window.")
92 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc."
93 "'N', 'C', 'W' stands for batch, channel, and width"
94 "dimensions respectively. Convolution is applied on the 'W'"
99 "Dimension ordering of weight. Can be 'OIW', or 'WIO', etc."
100 "'O', 'I', 'W' stands for num_filter, input_channel, and width"
101 "dimensions respectively.");
105 "Dimension ordering of output. Can be 'NCW', 'NWC', etc."
106 "'N', 'C', 'W' stands for batch, channel, and width"
107 "dimensions respectively. Default to be same as input layout.");
112 .describe(
"Output data type, set to explicit type under mixed precision setting");
134 .describe(
"Specifies the strides of the convolution.");
138 "If padding is non-zero, then the input is implicitly zero-padded"
139 "Padding support both symmetric and asymmetric as"
140 "one int : same padding used on all sides"
141 "two int : bottom, right will use same padding as top, left"
142 "four int : padding width in the order of (top, left, bottom, right)");
145 .describe(
"Specifies the dilation rate to use for dilated convolution.");
147 "Controls the connections between inputs and outputs."
148 "At groups=1, all inputs are convolved to all outputs."
149 "At groups=2, the operation becomes equivalent to having two convolution"
150 "layers side by side, each seeing half the input channels, and producing"
151 "half the output channels, and both subsequently concatenated.");
154 "The number of output channels in the convolution."
155 " If it is not set, inferred by shape of the weight.")
156 .set_default(NullValue<IndexExpr>());
158 .describe(
"Specifies the dimensions of the convolution window.")
163 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
164 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
165 "dimensions respectively. Convolution is applied on the 'H' and"
170 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
171 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
172 "dimensions respectively.");
176 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
177 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
178 "dimensions respectively. Default to be same as input layout.");
183 .describe(
"Output data type, set to explicit type under mixed precision setting");
192 "relay.attrs.ConvWinogradWeightTransformAttrs") {
194 "Tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
227 "The tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
230 .describe(
"Specifies the strides of the convolution.");
234 "If padding is non-zero, then the input is implicitly zero-padded"
235 "Padding support both symmetric and asymmetric as"
236 "one int : same padding used on all sides"
237 "two int : bottom, right will use same padding as top, left"
238 "four int : padding width in the order of (top, left, bottom, right)");
241 .describe(
"Specifies the dilation rate to use for dilated convolution.");
243 "Controls the connections between inputs and outputs."
244 "At groups=1, all inputs are convolved to all outputs."
245 "At groups=2, the operation becomes equivalent to having two convolution"
246 "layers side by side, each seeing half the input channels, and producing"
247 "half the output channels, and both subsequently concatenated.");
250 "The number of output channels in the convolution."
251 " If it is not set, inferred by shape of the weight.")
252 .set_default(NullValue<IndexExpr>());
254 .describe(
"Specifies the dimensions of the convolution window.")
259 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
260 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
261 "dimensions respectively. Convolution is applied on the 'H' and"
266 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
267 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
268 "dimensions respectively.");
272 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
273 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
274 "dimensions respectively. Default to be same as input layout.");
279 .describe(
"Output data type, set to explicit type under mixed precision setting");
285 :
public tvm::AttrsNode<Conv2DWinogradNNPACKWeightTransformAttrs> {
290 "relay.attrs.Conv2DWinogradNNPACKWeightTransformAttrs") {
293 "The convolution algorithm for Winograd NNPACK. "
294 "E.g. tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8 for WT_8x8, "
295 "tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8_FP16 for WT_8x8_FP16");
298 .describe(
"Output data type, set to explicit type under mixed precision setting");
320 .describe(
"Specifies the strides of the convolution.");
324 "If padding is non-zero, then the input is implicitly zero-padded"
325 "Padding support both symmetric and asymmetric as"
326 "one int : same padding used on all sides"
327 "three int : back, bottom, right will use same padding as front, top, left"
328 "six int : padding width in the order of (front, top, left, back, bottom,"
332 .describe(
"Specifies the dilation rate to use for dilated convolution.");
334 "Controls the connections between inputs and outputs."
335 "At groups=1, all inputs are convolved to all outputs."
336 "At groups=2, the operation becomes equivalent to having two convolution"
337 "layers side by side, each seeing half the input channels, and producing"
338 "half the output channels, and both subsequently concatenated.");
341 "The number of output channels in the convolution."
342 " If it is not set, inferred by shape of the weight.")
343 .set_default(NullValue<IndexExpr>());
345 .describe(
"Specifies the dimensions of the convolution window.")
348 .set_default(
"NCDHW")
350 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
351 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
352 "dimensions respectively. Convolution is applied on the 'D', 'H' and"
355 .set_default(
"OIDHW")
357 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc."
358 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height,"
359 "and width dimensions respectively.");
363 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc."
364 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
365 "dimensions respectively. Default to be same as input layout.");
370 .describe(
"Output data type, set to explicit type under mixed precision setting");
390 .set_default(NullValue<IndexExpr>())
392 "The dimensionality of the output space"
393 "i.e. the number of output channels in the convolution.");
395 .describe(
"The dimensions of the convolution window.")
399 .describe(
"The strides of the convolution.");
403 "Zero-padding added to one side of the output."
404 "Padding support both symmetric and asymmetric as"
405 "one int : same padding used on all sides"
406 "three int : front, bottom, right will use same padding as back, top, left"
407 "six int : padding width in the order of (front, top, left, back, bottom, right)");
411 "If padding is non-zero, then the input is implicitly zero-padded"
412 "Padding support both symmetric and asymmetric as"
413 "one int : same padding used on all sides"
414 "three int : front, bottom, right will use same padding as back, top, left"
415 "six int : padding width in the order of (front, top, left, back, bottom, right)");
418 .describe(
"Specifies the dilation rate to use for dilated convolution.");
420 "Controls the connections between inputs and outputs."
421 "At groups=1, all inputs are convolved to all outputs."
422 "At groups=2, the operation becomes equivalent to having two convolution"
423 "layers side by side, each seeing half the input channels, and producing"
424 "half the output channels, and both subsequently concatenated.");
426 .set_default(
"NCDHW")
428 "Dimension ordering of data. Can be 'NCDHW', 'NDHWC', etc."
429 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
430 "dimensions respectively. Convolution is applied on the 'D', 'H' and"
433 .set_default(
"IODHW")
435 "Dimension ordering of data and weight. Can be 'IODHW', 'IODHW16i16o', etc."
436 "'I', 'O', 'D', 'H', 'W' stands for input_channel, num_filter, depth, height, and width"
437 "dimensions respectively.");
441 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc."
442 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
443 "dimensions respectively. Default to be same as input layout.");
446 .describe(
"Output data type, set to explicit type under mixed precision setting");
466 "The tile size of winograd. E.g. 2 for F(2x2x2, 3x3x3) and 4 for F(4x4x4, 3x3x3)");
469 .describe(
"Specifies the strides of the convolution.");
473 "If padding is non-zero, then the input is implicitly zero-padded"
474 "Padding support both symmetric and asymmetric as"
475 "one int : same padding used on all sides"
476 "three int : back, bottom, right will use same padding as front, top, left"
477 "six int : padding width in the order of (front, top, left, back, bottom,"
481 .describe(
"Specifies the dilation rate to use for dilated convolution.");
483 "Controls the connections between inputs and outputs."
484 "At groups=1, all inputs are convolved to all outputs."
485 "At groups=2, the operation becomes equivalent to having two convolution"
486 "layers side by side, each seeing half the input channels, and producing"
487 "half the output channels, and both subsequently concatenated.");
490 "The number of output channels in the convolution."
491 " If it is not set, inferred by shape of the weight.")
492 .set_default(NullValue<IndexExpr>());
494 .describe(
"Specifies the dimensions of the convolution window.")
497 .set_default(
"NCDHW")
499 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
500 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
501 "dimensions respectively. Convolution is applied on the 'D', 'H' and"
504 .set_default(
"OIDHW")
506 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc."
507 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height,"
508 "and width dimensions respectively.");
512 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc."
513 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
514 "dimensions respectively. Default to be same as input layout.");
519 .describe(
"Output data type, set to explicit type under mixed precision setting");
528 TVM_ATTR_FIELD(
axis).set_default(-1).describe(
"The axis to sum over when computing softmax.");
548 .set_default(NullValue<IndexExpr>())
550 "The dimensionality of the output space"
551 "i.e. the number of output channels in the convolution.");
553 .describe(
"The dimensions of the convolution window.")
557 .describe(
"The strides of the convolution.");
561 "Zero-padding added to one side of the output."
562 "Padding support both symmetric and asymmetric as"
563 "one int : same padding used on all sides"
564 "two int : bottom, right will use same padding as top, left"
565 "four int : padding width in the order of (top, left, bottom, right)");
569 "If padding is non-zero, then the input is implicitly zero-padded"
570 "Padding support both symmetric and asymmetric as"
571 "one int : same padding used on all sides"
572 "two int : bottom, right will use same padding as top, left"
573 "four int : padding width in the order of (top, left, bottom, right)");
576 .describe(
"Specifies the dilation rate to use for dilated convolution.");
578 "Controls the connections between inputs and outputs."
579 "At groups=1, all inputs are convolved to all outputs."
580 "At groups=2, the operation becomes equivalent to having two convolution"
581 "layers side by side, each seeing half the input channels, and producing"
582 "half the output channels, and both subsequently concatenated.");
586 "Dimension ordering of data. Can be 'NCHW', 'NHWC', etc."
587 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
588 "dimensions respectively. Convolution is applied on the 'H' and"
593 "Dimension ordering of data and weight. Can be 'IOHW', 'OIHW16o16i', etc."
594 "'I', 'O', 'H', 'W' stands for input_channel, num_filter, height, and width"
595 "dimensions respectively.");
599 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
600 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
601 "dimensions respectively. Default to be same as input layout.");
604 .describe(
"Output data type, set to explicit type under mixed precision setting");
616 .describe(
"Dilation stride on each dimension, 1 means no dilation.");
637 .set_default(NullValue<IndexExpr>())
639 "The dimensionality of the output space"
640 "i.e. the number of output channels in the convolution.");
642 .describe(
"The dimensions of the convolution window.")
646 .describe(
"The strides of the convolution.");
649 .describe(
"Zero-padding added to one side of the output.");
653 "Symmetric or asymmetric padding."
654 "Single value: the input is implicitly zero-padded on both sides."
655 "Two values: padding[0] is used for left input padding, "
656 "padding[1] is used for right input padding,");
659 .describe(
"Specifies the dilation rate to use for dilated convolution.");
661 "Controls the connections between inputs and outputs."
662 "At groups=1, all inputs are convolved to all outputs."
663 "At groups=2, the operation becomes equivalent to having two convolution"
664 "layers side by side, each seeing half the input channels, and producing"
665 "half the output channels, and both subsequently concatenated.");
669 "Dimension ordering of data. Can be 'NCW', 'NWC', etc."
670 "'N', 'C', 'W' stands for batch, channel, and width"
671 "dimensions respectively. Convolution is applied on the"
676 "Dimension ordering of data and weight. Can be 'IOW', 'IOW16o16i', etc."
677 "'I', 'O', 'W' stands for input_channel, num_filter and width"
678 "dimensions respectively.");
682 "Dimension ordering of output. Can be 'NCW', 'NWC', etc."
683 "'N', 'C', 'W' stands for batch, channel, and width"
684 "dimensions respectively. Default to be same as input layout.");
687 .describe(
"Output data type, set to explicit type under mixed precision setting");
705 .describe(
"Specifies the strides of the convolution.");
708 .describe(
"Specifies the dilation of the convolution.");
712 "If padding is non-zero, then the input is implicitly zero-padded"
713 "Padding support both symmetric and asymmetric as"
714 "one int : same padding used on all sides"
715 "two int : bottom, right will use same padding as top, left"
716 "four int : padding width in the order of (top, left, bottom, right)");
718 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
719 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
720 "dimensions respectively. Pooling is applied on the 'H' and"
725 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
726 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
727 "dimensions respectively. Pooling is applied on the 'H' and"
730 "When true, will use ceil instead of floor to compute the output shape.");
749 .describe(
"Specifies the strides of the convolution.");
752 .describe(
"Specifies the dilation of the convolution.");
756 "If padding is non-zero, then the input is implicitly zero-padded"
757 "Padding support both symmetric and asymmetric as"
758 "one int : same padding used on all sides"
759 "two int : bottom, right will use same padding as top, left"
760 "four int : padding width in the order of (top, left, bottom, right)");
762 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
763 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
764 "dimensions respectively. Pooling is applied on the 'H' and"
769 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
770 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
771 "dimensions respectively. Pooling is applied on the 'H' and"
774 "When true, will use ceil instead of floor to compute the output shape.");
777 .describe(
"When true, will include padding to compute the average");
788 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
789 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
790 "dimensions respectively. Pooling is applied on the 'H' and"
795 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
796 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
797 "dimensions respectively. Pooling is applied on the 'H' and"
811 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc."
812 "'N', 'C', 'W' stands for batch, channel, and width"
813 "dimensions respectively. Pooling is applied on the"
818 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc."
819 "'N', 'C', 'W' stands for batch, channel, and width"
820 "dimensions respectively. Pooling is applied on the"
834 .describe(
"Output height and width.");
836 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
837 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
838 "dimensions respectively. Pooling is applied on the 'H' and"
843 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
844 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
845 "dimensions respectively. Pooling is applied on the 'H' and"
859 .describe(
"Output depth, height and width.");
861 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
862 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
863 "dimensions respectively. Pooling is applied on 'D', 'H' and"
868 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc."
869 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
870 "dimensions respectively. Pooling is applied on 'D', 'H' and"
889 .describe(
"Specifies the strides of the convolution.");
892 .describe(
"Specifies the dilation of the convolution.");
896 "If padding is non-zero, then the input is implicitly zero-padded"
897 "Padding supports both symmetric and asymmetric as"
898 "one int : same padding used on each side"
899 "two int : indicates left padding, right padding");
901 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc."
902 "'N', 'C', 'W' stands for batch, channel, and width"
903 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
907 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc."
908 "'N', 'C', 'W' stands for batch, channel, and width"
909 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
911 "When true, will use ceil instead of floor to compute the output shape.");
930 .describe(
"Specifies the strides of the convolution.");
933 .describe(
"Specifies the dilation of the convolution.");
937 "If padding is non-zero, then the input is implicitly zero-padded"
938 "Padding supports both symmetric and asymmetric as"
939 "one int : same padding used on each side"
940 "two int : indicates left padding, right padding");
942 "Dimension ordering of input data. Can be 'NCW', 'NHC', etc."
943 "'N', 'C', 'W' stands for batch, channel, and width"
944 "dimensions respectively. Pooling is applied on the 'W' dimension.");
948 "Dimension ordering of output data. Can be 'NCW', 'NHC', etc."
949 "'N', 'C', 'W' stands for batch, channel, and width"
950 "dimensions respectively. Pooling is applied on the 'W' dimension.");
952 "When true, will use ceil instead of floor to compute the output shape.");
955 .describe(
"When true, will include padding to compute the average");
973 .describe(
"Specifies the strides of the convolution.");
976 .describe(
"Specifies the dilation of the convolution.");
980 "If padding is non-zero, then the input is implicitly zero-padded"
981 "Padding support both symmetric and asymmetric as"
982 "one int : same padding used on all sides"
983 "three int : back, bottom, right will use same padding as front, top, left"
984 "six int : padding width in the order of (front, top, left, back, bottom, right)");
986 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
987 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
988 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
993 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc."
994 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
995 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
998 "When true, will use ceil instead of floor to compute the output shape.");
1017 .describe(
"Specifies the strides of the convolution.");
1020 .describe(
"Specifies the dilation of the convolution.");
1024 "If padding is non-zero, then the input is implicitly zero-padded"
1025 "Padding support both symmetric and asymmetric as"
1026 "one int : same padding used on all sides"
1027 "three int : back, bottom, right will use same padding as front, top, left"
1028 "six int : padding width in the order of (front, top, left, back, bottom, right)");
1030 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
1031 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
1032 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
1037 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc."
1038 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
1039 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
1042 "When true, will use ceil instead of floor to compute the output shape.");
1045 .describe(
"When true, will include padding to compute the average");
1065 .describe(
"Output data type, set to explicit type under mixed precision setting");
1069 .describe(
"Whether the first input tensor is in transposed format.");
1073 .describe(
"Whether the second input tensor is in transposed format.");
1091 .describe(
"Output data type, set to explicit type under mixed precision setting");
1107 .describe(
"Output data type, set to explicit type under mixed precision setting");
1110 .describe(
"Dimension ordering of weight. Packed layouts, such as NC8n, are possible.");
1126 .describe(
"Output data type, set to explicit type under mixed precision setting");
1130 .describe(
"Whether the first input tensor is in transposed format.");
1134 .describe(
"Whether the second input tensor is in transposed format.");
1146 "Indicate whether sparse matrix is multiplied on the right or the left. If true, then "
1147 "the operation is S * D^T (D dense, S sparse). If false, the operation is D * S^T");
1163 "Dimension ordering of input data. Can be 'NCHW', 'NHWC'"
1164 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1165 "dimensions respectively.");
1168 .describe(
"Kernel size for SparseConv2D, 1x1 or 3x3. ");
1193 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1194 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1195 "dimensions respectively. Upsampling is applied on the 'H' and"
1198 .set_default(
"nearest_neighbor")
1200 "Specify the mode to use for scaling."
1201 "nearest_neighbor - Nearest Neighbor"
1202 "bilinear - Bilinear Interpolation"
1203 "bicubic - Bicubic Interpolation");
1206 .describe(
"Should be true to preserve the values at the corner pixels");
1224 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
1225 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
1226 "dimensions respectively. Upsampling is applied on the 'D', 'H' and"
1229 .set_default(
"nearest_neighbor")
1231 "Specify the mode to use for scaling."
1232 "nearest_neighbor - Nearest Neighbor"
1233 "trilinear - Trilinear Interpolation");
1235 .set_default(
"half_pixel")
1237 "Describes how to transform the coordinate in the resized tensor"
1238 "to the coordinate in the original tensor."
1239 "Refer to the ONNX Resize operator specification for details"
1240 "Available options are half_pixel, align_corners and asymmetric");
1251 "Number of values padded to the edges of each axis, "
1252 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1254 .set_default(
"constant")
1256 "Padding type to use. \"constant\" pads with constant_value, "
1257 "\"edge\" pads using the edge values of the input array, "
1258 "\"reflect\" pads by reflecting values with respect to the edges.");
1269 .set_default(
"SYMMETRIC")
1270 .describe(
"Specifies how mirroring should be performed.");
1272 "Number of values padded to the edges of each axis, "
1273 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1283 "Slope coefficient for the negative half axis.");
1293 "Specify which shape axis the channel is specified.");
1302 .describe(
"Fraction of the input that gets dropped out during training time")
1315 TVM_ATTR_FIELD(
axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1317 .describe(
"Small float added to variance to avoid dividing by zero")
1320 .describe(
"If True, add offset of beta to normalized tensor. If False, beta is ignored")
1324 "If True, multiply by gamma. If False, gamma is not used. "
1325 "When the next layer is piecewise linear (also, e.g., nn.relu), "
1326 "this can be disabled since the scaling will be done by the next layer.")
1339 TVM_ATTR_FIELD(
axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1341 .describe(
"Small float added to variance to avoid dividing by zero")
1344 "If true, add offset of beta to normalized tensor; "
1345 "otherwise, beta is ignored.");
1347 "If true, multiply by gamma; otherwise, gamma is ignored.");
1359 TVM_ATTR_FIELD(
axis).set_default(-1).describe(
"Specify which shape axis denotes the channel.");
1361 "Small float added to variance to avoid dividing by zero");
1363 "If true, add offset of beta to normalized tensor; "
1364 "otherwise, beta is ignored.");
1366 "If true, multiply by gamma; otherwise, gamma is ignored.");
1381 .describe(
"Specify number of groups to separate the channels into.");
1382 TVM_ATTR_FIELD(
axis).set_default(1).describe(
"Specify which shape axis denotes the channel.");
1384 "Small float added to variance to avoid dividing by zero");
1386 "If true, add offset of beta to normalized tensor; "
1387 "otherwise, beta is ignored.");
1389 "If true, multiply by gamma; otherwise, gamma is ignored.");
1403 "The size of the local region to be considered for normalization.");
1405 TVM_ATTR_FIELD(
bias).set_default(2).describe(
"The offset parameter to avoid division by 0.");
1417 TVM_ATTR_FIELD(
eps).describe(
"A lower bound value for the norm, to avoid division by 0.");
1439 .describe(
"Specifies the strides of the convolution.");
1443 "If padding is non-zero, then the input is implicitly zero-padded"
1444 "Padding support both symmetric and asymmetric as"
1445 "one int : same padding used on all sides"
1446 "two int : bottom, right will use same padding as top, left"
1447 "four int : padding width in the order of (top, left, bottom, right)");
1450 .describe(
"Specifies the dilation rate to use for dilated convolution.");
1454 "Controls the connections between inputs and offsets."
1455 "Input channels are partitioned into multiple deformable groups. Offsets"
1456 "are shared across input channels in the same deformable group.");
1458 "Controls the connections between inputs and outputs."
1459 "At groups=1, all inputs are convolved to all outputs."
1460 "At groups=2, the operation becomes equivalent to having two convolution"
1461 "layers side by side, each seeing half the input channels, and producing"
1462 "half the output channels, and both subsequently concatenated.");
1465 "The number of output channels in the convolution."
1466 " If it is not set, inferred by shape of the weight.")
1467 .set_default(NullValue<IndexExpr>());
1469 .describe(
"Specifies the dimensions of the convolution window.")
1472 .set_default(
"NCHW")
1474 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1475 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1476 "dimensions respectively. Convolution is applied on the 'H' and"
1479 .set_default(
"OIHW")
1481 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
1482 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
1483 "dimensions respectively.");
1487 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
1488 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1489 "dimensions respectively. Default to be same as input layout.");
1494 .describe(
"Output data type, set to explicit type under mixed precision setting");
1506 .describe(
"The size of subpixel blocks to compose or decompose.")
1509 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1510 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1511 "dimensions respectively.");
1513 "Indicates order in which channels are accessed. Must be one of"
1530 .describe(
"Kernel size for correlation, must be an odd number.")
1536 .describe(
"Padding for data1 and data2.")
1539 .describe(
"Operation type is either multiplication or substraction.")
1542 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1543 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1544 "dimensions respectively.");
1557 .describe(
"1-D containing block size for each spatial dimension.");
1571 .describe(
"1-D containing block size for each spatial dimension.");
1583 "The reduction method to apply to the output. Can be"
1584 "'none', 'mean' or 'sum'.");
The base class of the all the Use "curiously recurring template pattern".
Definition: attrs.h:833
Reference to PrimExprNode.
Definition: expr.h:114
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
Runtime primitive data type.
Definition: data_type.h:42
Reference to string objects.
Definition: string.h:98
Helpers for attribute objects.
#define TVM_ATTR_FIELD(FieldName)
Declare an attribute field.
Definition: attrs.h:76
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
DataType NullValue< DataType >()
Definition: attrs.h:90
TObjectRef NullValue()
Create a NodeRef type that represents null.
Definition: attrs.h:84
Base classes for the Relay IR.
Attributes for 1d adaptive pool operator.
Definition: nn.h:803
TVM_DECLARE_ATTRS(AdaptivePool1DAttrs, "relay.attrs.AdaptivePool1DAttrs")
Definition: nn.h:808
Array< IndexExpr > output_size
Definition: nn.h:804
tvm::String out_layout
Definition: nn.h:806
std::string layout
Definition: nn.h:805
Attributes for 2d adaptive pool operator.
Definition: nn.h:826
Array< IndexExpr > output_size
Definition: nn.h:827
std::string layout
Definition: nn.h:828
TVM_DECLARE_ATTRS(AdaptivePool2DAttrs, "relay.attrs.AdaptivePool2DAttrs")
Definition: nn.h:831
tvm::String out_layout
Definition: nn.h:829
Attributes for 3d adaptive pool operator.
Definition: nn.h:851
Array< IndexExpr > output_size
Definition: nn.h:852
tvm::String out_layout
Definition: nn.h:854
std::string layout
Definition: nn.h:853
TVM_DECLARE_ATTRS(AdaptivePool3DAttrs, "relay.attrs.AdaptivePool3DAttrs")
Definition: nn.h:856
Attributes for 1D avg pool operator.
Definition: nn.h:916
Array< IndexExpr > strides
Definition: nn.h:918
Array< IndexExpr > pool_size
Definition: nn.h:917
tvm::String out_layout
Definition: nn.h:922
bool count_include_pad
Definition: nn.h:924
Array< IndexExpr > dilation
Definition: nn.h:919
Array< IndexExpr > padding
Definition: nn.h:920
bool ceil_mode
Definition: nn.h:923
TVM_DECLARE_ATTRS(AvgPool1DAttrs, "relay.attrs.AvgPool1DAttrs")
Definition: nn.h:926
std::string layout
Definition: nn.h:921
Attributes for avg pool operator.
Definition: nn.h:735
tvm::String out_layout
Definition: nn.h:741
Array< IndexExpr > dilation
Definition: nn.h:739
tvm::String layout
Definition: nn.h:740
TVM_DECLARE_ATTRS(AvgPool2DAttrs, "relay.attrs.AvgPool2DAttrs")
Definition: nn.h:745
bool ceil_mode
Definition: nn.h:742
Array< IndexExpr > padding
Definition: nn.h:738
bool count_include_pad
Definition: nn.h:743
Array< IndexExpr > strides
Definition: nn.h:737
Array< IndexExpr > pool_size
Definition: nn.h:736
Attributes for 3D avg pool operator.
Definition: nn.h:1003
TVM_DECLARE_ATTRS(AvgPool3DAttrs, "relay.attrs.AvgPool3DAttrs")
Definition: nn.h:1013
Array< IndexExpr > strides
Definition: nn.h:1005
tvm::String out_layout
Definition: nn.h:1009
Array< IndexExpr > pool_size
Definition: nn.h:1004
Array< IndexExpr > dilation
Definition: nn.h:1006
Array< IndexExpr > padding
Definition: nn.h:1007
bool ceil_mode
Definition: nn.h:1010
std::string layout
Definition: nn.h:1008
bool count_include_pad
Definition: nn.h:1011
Attributes for batch matmul operator.
Definition: nn.h:1115
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1120
bool transpose_b
Definition: nn.h:1118
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1119
TVM_DECLARE_ATTRS(BatchMatmulAttrs, "relay.attrs.BatchMatmulAttrs")
Definition: nn.h:1122
bool transpose_a
Definition: nn.h:1117
DataType out_dtype
Definition: nn.h:1116
Attributes used in batch_norm operator.
Definition: nn.h:1308
int axis
Definition: nn.h:1309
bool scale
Definition: nn.h:1312
bool center
Definition: nn.h:1311
double epsilon
Definition: nn.h:1310
TVM_DECLARE_ATTRS(BatchNormAttrs, "relay.attrs.BatchNormAttrs")
Definition: nn.h:1314
Attributes used in BatchToSpaceND operator.
Definition: nn.h:1564
TVM_DECLARE_ATTRS(BatchToSpaceNDAttrs, "relay.attrs.BatchToSpaceNDAttrs")
Definition: nn.h:1568
Array< Integer > block_shape
Definition: nn.h:1565
Array< Array< IndexExpr > > crops
Definition: nn.h:1566
Add a 1D Tensor to an axis of a data.
Definition: nn.h:42
TVM_DECLARE_ATTRS(BiasAddAttrs, "relay.attrs.BiasAddAttrs")
Definition: nn.h:45
int axis
Definition: nn.h:43
Attributes used in 1D convolution operators.
Definition: nn.h:51
Array< IndexExpr > strides
Definition: nn.h:52
DataType out_dtype
Definition: nn.h:61
int groups
Definition: nn.h:55
Array< IndexExpr > padding
Definition: nn.h:53
TVM_DECLARE_ATTRS(Conv1DAttrs, "relay.attrs.Conv1DAttrs")
Definition: nn.h:63
tvm::String data_layout
Definition: nn.h:58
tvm::String kernel_layout
Definition: nn.h:59
Array< IndexExpr > dilation
Definition: nn.h:54
Array< IndexExpr > kernel_size
Definition: nn.h:57
IndexExpr channels
Definition: nn.h:56
tvm::String out_layout
Definition: nn.h:60
Attributes used in 1D transposed convolution operator.
Definition: nn.h:622
TVM_DECLARE_ATTRS(Conv1DTransposeAttrs, "relay.attrs.Conv1DTransposeAttrs")
Definition: nn.h:635
std::string out_layout
Definition: nn.h:632
Array< IndexExpr > strides
Definition: nn.h:625
Array< IndexExpr > kernel_size
Definition: nn.h:624
int groups
Definition: nn.h:629
std::string data_layout
Definition: nn.h:630
Array< IndexExpr > output_padding
Definition: nn.h:627
IndexExpr channels
Definition: nn.h:623
Array< IndexExpr > dilation
Definition: nn.h:628
std::string kernel_layout
Definition: nn.h:631
Array< IndexExpr > padding
Definition: nn.h:626
DataType out_dtype
Definition: nn.h:633
Attributes used in convolution operators.
Definition: nn.h:117
DataType out_dtype
Definition: nn.h:129
Array< IndexExpr > dilation
Definition: nn.h:120
tvm::String out_layout
Definition: nn.h:126
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:128
IndexExpr channels
Definition: nn.h:122
Array< IndexExpr > kernel_size
Definition: nn.h:123
Array< IndexExpr > padding
Definition: nn.h:119
TVM_DECLARE_ATTRS(Conv2DAttrs, "relay.attrs.Conv2DAttrs")
Definition: nn.h:131
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:127
tvm::String kernel_layout
Definition: nn.h:125
int groups
Definition: nn.h:121
Array< IndexExpr > strides
Definition: nn.h:118
tvm::String data_layout
Definition: nn.h:124
Attributes used in transposed convolution operator.
Definition: nn.h:533
int groups
Definition: nn.h:540
TVM_DECLARE_ATTRS(Conv2DTransposeAttrs, "relay.attrs.Conv2DTransposeAttrs")
Definition: nn.h:546
Array< IndexExpr > strides
Definition: nn.h:536
Array< IndexExpr > dilation
Definition: nn.h:539
std::string data_layout
Definition: nn.h:541
std::string out_layout
Definition: nn.h:543
Array< IndexExpr > padding
Definition: nn.h:537
IndexExpr channels
Definition: nn.h:534
DataType out_dtype
Definition: nn.h:544
Array< IndexExpr > output_padding
Definition: nn.h:538
std::string kernel_layout
Definition: nn.h:542
Array< IndexExpr > kernel_size
Definition: nn.h:535
Attributes used in convolution operators with winograd algorithm.
Definition: nn.h:210
DataType out_dtype
Definition: nn.h:223
tvm::String kernel_layout
Definition: nn.h:219
Array< IndexExpr > strides
Definition: nn.h:212
tvm::String data_layout
Definition: nn.h:218
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:222
int tile_size
Definition: nn.h:211
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:221
TVM_DECLARE_ATTRS(Conv2DWinogradAttrs, "relay.attrs.Conv2DWinogradAttrs")
Definition: nn.h:225
tvm::String out_layout
Definition: nn.h:220
Array< IndexExpr > kernel_size
Definition: nn.h:217
int groups
Definition: nn.h:215
Array< IndexExpr > dilation
Definition: nn.h:214
IndexExpr channels
Definition: nn.h:216
Array< IndexExpr > padding
Definition: nn.h:213
Attributes used in convolution operators.
Definition: nn.h:303
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:313
DataType out_dtype
Definition: nn.h:315
Array< IndexExpr > kernel_size
Definition: nn.h:309
tvm::String kernel_layout
Definition: nn.h:311
tvm::String out_layout
Definition: nn.h:312
tvm::String data_layout
Definition: nn.h:310
Array< IndexExpr > strides
Definition: nn.h:304
IndexExpr channels
Definition: nn.h:308
int groups
Definition: nn.h:307
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:314
Array< IndexExpr > padding
Definition: nn.h:305
TVM_DECLARE_ATTRS(Conv3DAttrs, "relay.attrs.Conv3DAttrs")
Definition: nn.h:317
Array< IndexExpr > dilation
Definition: nn.h:306
Attributes used in transposed convolution operator.
Definition: nn.h:375
tvm::String data_layout
Definition: nn.h:383
Array< IndexExpr > strides
Definition: nn.h:378
Array< IndexExpr > output_padding
Definition: nn.h:380
Array< IndexExpr > padding
Definition: nn.h:379
Array< IndexExpr > kernel_size
Definition: nn.h:377
tvm::String kernel_layout
Definition: nn.h:384
int groups
Definition: nn.h:382
TVM_DECLARE_ATTRS(Conv3DTransposeAttrs, "relay.attrs.Conv3DTransposeAttrs")
Definition: nn.h:388
DataType out_dtype
Definition: nn.h:386
Array< IndexExpr > dilation
Definition: nn.h:381
IndexExpr channels
Definition: nn.h:376
tvm::String out_layout
Definition: nn.h:385
Attributes used in 3d winograd convolution operators.
Definition: nn.h:451
int groups
Definition: nn.h:456
TVM_DECLARE_ATTRS(Conv3DWinogradAttrs, "relay.attrs.Conv3DWinogradAttrs")
Definition: nn.h:464
std::string data_layout
Definition: nn.h:459
Array< IndexExpr > dilation
Definition: nn.h:455
std::string kernel_layout
Definition: nn.h:460
DataType out_dtype
Definition: nn.h:462
Array< IndexExpr > kernel_size
Definition: nn.h:458
Array< IndexExpr > padding
Definition: nn.h:454
int tile_size
Definition: nn.h:452
Array< IndexExpr > strides
Definition: nn.h:453
IndexExpr channels
Definition: nn.h:457
std::string out_layout
Definition: nn.h:461
Attributes used in correlation operators.
Definition: nn.h:1519
String layout
Definition: nn.h:1526
TVM_DECLARE_ATTRS(CorrelationAttrs, "relay.attrs.CorrelationAttrs")
Definition: nn.h:1528
int kernel_size
Definition: nn.h:1520
int stride2
Definition: nn.h:1523
int stride1
Definition: nn.h:1522
Array< IndexExpr > padding
Definition: nn.h:1524
int max_displacement
Definition: nn.h:1521
bool is_multiply
Definition: nn.h:1525
Attributes for dense operator.
Definition: nn.h:1078
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1082
IndexExpr units
Definition: nn.h:1079
TVM_DECLARE_ATTRS(DenseAttrs, "relay.attrs.DenseAttrs")
Definition: nn.h:1085
DataType out_dtype
Definition: nn.h:1083
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1081
Attributes for dense_pack operator.
Definition: nn.h:1096
TVM_DECLARE_ATTRS(DensePackAttrs, "relay.attrs.DensePackAttrs")
Definition: nn.h:1101
tvm::String weight_layout
Definition: nn.h:1099
IndexExpr units
Definition: nn.h:1097
DataType out_dtype
Definition: nn.h:1098
Attributes used in dilate operator.
Definition: nn.h:609
TVM_DECLARE_ATTRS(DilateAttrs, "relay.attrs.DilateAttrs")
Definition: nn.h:613
Array< IndexExpr > strides
Definition: nn.h:610
double dilation_value
Definition: nn.h:611
Attributes used in dropout operator.
Definition: nn.h:1298
double rate
Definition: nn.h:1299
TVM_DECLARE_ATTRS(DropoutAttrs, "relay.attrs.DropoutAttrs")
Definition: nn.h:1300
Attributes for FIFO buffer operator.
Definition: nn.h:1173
TVM_DECLARE_ATTRS(FIFOBufferAttrs, "relay.attrs.FIFOBufferAttrs")
Definition: nn.h:1176
int axis
Definition: nn.h:1174
Attributes for global pool operator.
Definition: nn.h:782
TVM_DECLARE_ATTRS(GlobalPool2DAttrs, "relay.attrs.GlobalPool2DAttrs")
Definition: nn.h:786
tvm::String layout
Definition: nn.h:783
tvm::String out_layout
Definition: nn.h:784
Attributes used in group_norm operator.
Definition: nn.h:1371
TVM_DECLARE_ATTRS(GroupNormAttrs, "relay.attrs.GroupNormAttrs")
Definition: nn.h:1378
int axis
Definition: nn.h:1373
bool scale
Definition: nn.h:1376
int num_groups
Definition: nn.h:1372
double epsilon
Definition: nn.h:1374
bool center
Definition: nn.h:1375
Attributes used in instance_norm operator.
Definition: nn.h:1332
int axis
Definition: nn.h:1333
bool scale
Definition: nn.h:1336
TVM_DECLARE_ATTRS(InstanceNormAttrs, "relay.attrs.InstanceNormAttrs")
Definition: nn.h:1338
double epsilon
Definition: nn.h:1334
bool center
Definition: nn.h:1335
Attributes for L2Normalize operator.
Definition: nn.h:1412
double eps
Definition: nn.h:1413
TVM_DECLARE_ATTRS(L2NormalizeAttrs, "relay.attrs.L2NormalizeAttrs")
Definition: nn.h:1416
Array< Integer > axis
Definition: nn.h:1414
Attributes for LRN operator.
Definition: nn.h:1394
int size
Definition: nn.h:1395
double bias
Definition: nn.h:1397
double beta
Definition: nn.h:1399
double alpha
Definition: nn.h:1398
int axis
Definition: nn.h:1396
TVM_DECLARE_ATTRS(LRNAttrs, "relay.attrs.LRNAttrs")
Definition: nn.h:1401
Attributes used in layer_norm operator.
Definition: nn.h:1352
bool center
Definition: nn.h:1355
double epsilon
Definition: nn.h:1354
TVM_DECLARE_ATTRS(LayerNormAttrs, "relay.attrs.LayerNormAttrs")
Definition: nn.h:1358
int axis
Definition: nn.h:1353
bool scale
Definition: nn.h:1356
Attributes for leaky relu operator.
Definition: nn.h:1278
TVM_DECLARE_ATTRS(LeakyReluAttrs, "relay.attrs.LeakyReluAttrs")
Definition: nn.h:1281
double alpha
Definition: nn.h:1279
Attributes for matmul operator.
Definition: nn.h:1050
DataType out_dtype
Definition: nn.h:1052
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1056
bool transpose_a
Definition: nn.h:1053
TVM_DECLARE_ATTRS(MatmulAttrs, "relay.attrs.MatmulAttrs")
Definition: nn.h:1059
IndexExpr units
Definition: nn.h:1051
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1057
bool transpose_b
Definition: nn.h:1054
Attributes for 1D max pool operator.
Definition: nn.h:876
std::string layout
Definition: nn.h:881
Array< IndexExpr > strides
Definition: nn.h:878
Array< IndexExpr > padding
Definition: nn.h:880
bool ceil_mode
Definition: nn.h:883
tvm::String out_layout
Definition: nn.h:882
TVM_DECLARE_ATTRS(MaxPool1DAttrs, "relay.attrs.MaxPool1DAttrs")
Definition: nn.h:885
Array< IndexExpr > pool_size
Definition: nn.h:877
Array< IndexExpr > dilation
Definition: nn.h:879
Attributes for max pool operator.
Definition: nn.h:692
TVM_DECLARE_ATTRS(MaxPool2DAttrs, "relay.attrs.MaxPool2DAttrs")
Definition: nn.h:701
tvm::String out_layout
Definition: nn.h:698
bool ceil_mode
Definition: nn.h:699
Array< IndexExpr > strides
Definition: nn.h:694
tvm::String layout
Definition: nn.h:697
Array< IndexExpr > pool_size
Definition: nn.h:693
Array< IndexExpr > padding
Definition: nn.h:695
Array< IndexExpr > dilation
Definition: nn.h:696
Attributes for 3D max pool operator.
Definition: nn.h:960
TVM_DECLARE_ATTRS(MaxPool3DAttrs, "relay.attrs.MaxPool3DAttrs")
Definition: nn.h:969
Array< IndexExpr > dilation
Definition: nn.h:963
bool ceil_mode
Definition: nn.h:967
std::string layout
Definition: nn.h:965
Array< IndexExpr > pool_size
Definition: nn.h:961
Array< IndexExpr > strides
Definition: nn.h:962
tvm::String out_layout
Definition: nn.h:966
Array< IndexExpr > padding
Definition: nn.h:964
Attributes used for the MirrorPadding operator.
Definition: nn.h:1263
TVM_DECLARE_ATTRS(MirrorPadAttrs, "relay.attrs.MirrorPadAttrs")
Definition: nn.h:1267
Array< Array< IndexExpr > > pad_width
Definition: nn.h:1265
std::string mode
Definition: nn.h:1264
Attributes used in NLLLoss operator.
Definition: nn.h:1577
std::string reduction
Definition: nn.h:1578
TVM_DECLARE_ATTRS(NLLLossAttrs, "relay.attrs.NLLLossAttrs")
Definition: nn.h:1581
int ignore_index
Definition: nn.h:1579
Attributes for prelu operator.
Definition: nn.h:1288
int axis
Definition: nn.h:1289
TVM_DECLARE_ATTRS(PReluAttrs, "relay.attrs.PReluAttrs")
Definition: nn.h:1291
Attributes used for the padding operator.
Definition: nn.h:1245
tvm::String pad_mode
Definition: nn.h:1247
TVM_DECLARE_ATTRS(PadAttrs, "relay.attrs.PadAttrs")
Definition: nn.h:1249
Array< Array< Integer > > pad_width
Definition: nn.h:1246
Attributes used in softmax operators.
Definition: nn.h:524
int axis
Definition: nn.h:525
TVM_DECLARE_ATTRS(SoftmaxAttrs, "relay.attrs.SoftmaxAttrs")
Definition: nn.h:527
Attributes used in SpaceToBatchND operator.
Definition: nn.h:1549
TVM_DECLARE_ATTRS(SpaceToBatchNDAttrs, "relay.attrs.SpaceToBatchNDAttrs")
Definition: nn.h:1554
double pad_value
Definition: nn.h:1552
Array< Integer > block_shape
Definition: nn.h:1550
Array< Array< IndexExpr > > paddings
Definition: nn.h:1551
Attributes for sparse_dense operator.
Definition: nn.h:1157
Array< IndexExpr > kernel_size
Definition: nn.h:1159
std::string layout
Definition: nn.h:1158
TVM_DECLARE_ATTRS(SparseConv2DAttrs, "relay.attrs.SparseConv2DAttrs")
Definition: nn.h:1161
Attributes for sparse_dense operator.
Definition: nn.h:1139
TVM_DECLARE_ATTRS(SparseDenseAttrs, "relay.attrs.SparseDenseAttrs")
Definition: nn.h:1142
bool sparse_lhs
Definition: nn.h:1140
Attributes for sparse_transpose operator.
Definition: nn.h:1152
TVM_DECLARE_ATTRS(SparseTransposeAttrs, "relay.attrs.SparseTransposeAttrs")
Definition: nn.h:1153
Attributes used in subpixel operators.
Definition: nn.h:1499
int block_size
Definition: nn.h:1500
std::string layout
Definition: nn.h:1501
TVM_DECLARE_ATTRS(SubPixelAttrs, "relay.attrs.SubPixelAttrs")
Definition: nn.h:1504
std::string mode
Definition: nn.h:1502
Attributes for upsampling3d operator.
Definition: nn.h:1211
TVM_DECLARE_ATTRS(UpSampling3DAttrs, "relay.attrs.UpSampling3DAttrs")
Definition: nn.h:1219
double scale_w
Definition: nn.h:1214
double scale_d
Definition: nn.h:1212
std::string method
Definition: nn.h:1216
double scale_h
Definition: nn.h:1213
std::string coordinate_transformation_mode
Definition: nn.h:1217
std::string layout
Definition: nn.h:1215
Attributes for upsampling operator.
Definition: nn.h:1182
double scale_h
Definition: nn.h:1183
bool align_corners
Definition: nn.h:1187
TVM_DECLARE_ATTRS(UpSamplingAttrs, "relay.attrs.UpSamplingAttrs")
Definition: nn.h:1189
tvm::String method
Definition: nn.h:1186
tvm::String layout
Definition: nn.h:1185
double scale_w
Definition: nn.h:1184