tvm
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
search_strategy.h
Go to the documentation of this file.
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one
3  * or more contributor license agreements. See the NOTICE file
4  * distributed with this work for additional information
5  * regarding copyright ownership. The ASF licenses this file
6  * to you under the Apache License, Version 2.0 (the
7  * "License"); you may not use this file except in compliance
8  * with the License. You may obtain a copy of the License at
9  *
10  * http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing,
13  * software distributed under the License is distributed on an
14  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15  * KIND, either express or implied. See the License for the
16  * specific language governing permissions and limitations
17  * under the License.
18  */
19 #ifndef TVM_META_SCHEDULE_SEARCH_STRATEGY_H_
20 #define TVM_META_SCHEDULE_SEARCH_STRATEGY_H_
21 
27 #include <tvm/node/reflection.h>
30 #include <tvm/runtime/object.h>
33 
34 namespace tvm {
35 namespace meta_schedule {
36 
37 // Forward declaration
38 class TuneContext;
39 class SearchStrategy;
40 
78  public:
80  virtual ~SearchStrategyNode() = default;
81 
87  virtual void InitializeWithTuneContext(const TuneContext& context) = 0;
88 
100  virtual void PreTuning(int max_trials, int num_trials_per_iter,
101  const Array<tir::Schedule>& design_spaces,
102  const Optional<Database>& database,
103  const Optional<CostModel>& cost_model) = 0;
104 
110  virtual void PostTuning() = 0;
111 
117 
123  virtual void NotifyRunnerResults(const Array<MeasureCandidate>& measure_candidates,
124  const Array<RunnerResult>& results) = 0;
125 
130  virtual SearchStrategy Clone() const = 0;
131 
132  static constexpr const char* _type_key = "meta_schedule.SearchStrategy";
134 };
135 
141  public:
151  int max_trials, int num_trials_per_iter, const Array<tir::Schedule>&,
152  const Optional<Database>&, const Optional<CostModel>&)>;
182  FInitializeWithTuneContext f_initialize_with_tune_context, //
183  FPreTuning f_pre_tuning, //
184  FPostTuning f_post_tuning, //
185  FGenerateMeasureCandidates f_generate_measure_candidates, //
186  FNotifyRunnerResults f_notify_runner_results, //
187  FClone f_clone);
188 
193  TVM_DLL static SearchStrategy ReplayTrace(int max_fail_count);
194 
196  TVM_DLL static SearchStrategy ReplayFunc();
197 
209  TVM_DLL static SearchStrategy EvolutionarySearch(int population_size, //
210  double init_measured_ratio, //
211  int init_min_unmeasured, //
212  int max_fail_count, //
213  int genetic_num_iters, //
214  double genetic_mutate_prob, //
215  int genetic_max_fail_count, //
216  double eps_greedy);
217 
219 };
220 
223  public:
230 
243 
245  // `f_initialize_with_tune_context` is not visited
246  // `f_pre_tuning` is not visited
247  // `f_post_tuning` is not visited
248  // `f_generate_measure_candidates` is not visited
249  // `f_notify_runner_results` is not visited
250  // `f_clone` is not visited
251  }
252 
253  void InitializeWithTuneContext(const TuneContext& context) final;
254  void PreTuning(int max_trials, int num_trials_per_iter, const Array<tir::Schedule>& design_spaces,
255  const Optional<Database>& database, const Optional<CostModel>& cost_model) final;
256  void PostTuning() final;
258  void NotifyRunnerResults(const Array<MeasureCandidate>& measure_candidates,
259  const Array<RunnerResult>& results);
260  SearchStrategy Clone() const final;
261 
262  static constexpr const char* _type_key = "meta_schedule.PySearchStrategy";
264 };
265 
266 } // namespace meta_schedule
267 } // namespace tvm
268 
269 #endif // TVM_META_SCHEDULE_SEARCH_STRATEGY_H_
Runtime Array container types.
Visitor class to get the attributes of an AST/IR node. The content is going to be called for each fie...
Definition: reflection.h:52
Managed reference to MeasureCandidateNode.
Definition: measure_candidate.h:53
The python side customizable class for measure candidate generation.
Definition: search_strategy.h:222
TVM_DECLARE_FINAL_OBJECT_INFO(PySearchStrategyNode, SearchStrategyNode)
FClone f_clone
The packed function to the Clone method.
Definition: search_strategy.h:242
void PostTuning() final
Post-tuning for the search strategy.
void PreTuning(int max_trials, int num_trials_per_iter, const Array< tir::Schedule > &design_spaces, const Optional< Database > &database, const Optional< CostModel > &cost_model) final
Pre-tuning for the search strategy.
FPostTuning f_post_tuning
The packed function to the PostTuning method.
Definition: search_strategy.h:236
FInitializeWithTuneContext f_initialize_with_tune_context
The packed function to the InitializeWithTuneContext method.
Definition: search_strategy.h:232
FGenerateMeasureCandidates f_generate_measure_candidates
The packed function to the GenerateMeasureCandidates method.
Definition: search_strategy.h:238
void NotifyRunnerResults(const Array< MeasureCandidate > &measure_candidates, const Array< RunnerResult > &results)
Update the search strategy with measurement results.
FNotifyRunnerResults f_notify_runner_results
The packed function to the NotifyRunnerResults method.
Definition: search_strategy.h:240
static constexpr const char * _type_key
Definition: search_strategy.h:262
Optional< Array< MeasureCandidate > > GenerateMeasureCandidates() final
Generate measure candidates from design spaces for measurement.
FPreTuning f_pre_tuning
The packed function to the PreTuning method.
Definition: search_strategy.h:234
SearchStrategy Clone() const final
Clone the search strategy.
void VisitAttrs(tvm::AttrVisitor *v)
Definition: search_strategy.h:244
void InitializeWithTuneContext(const TuneContext &context) final
Initialize the search strategy with tuning context.
Managed reference to RunnerResultNode.
Definition: runner.h:91
The search strategy for measure candidates generation.
Definition: search_strategy.h:77
static constexpr const char * _type_key
Definition: search_strategy.h:132
virtual void NotifyRunnerResults(const Array< MeasureCandidate > &measure_candidates, const Array< RunnerResult > &results)=0
Update the search strategy with measurement results.
TVM_DECLARE_BASE_OBJECT_INFO(SearchStrategyNode, Object)
virtual void PreTuning(int max_trials, int num_trials_per_iter, const Array< tir::Schedule > &design_spaces, const Optional< Database > &database, const Optional< CostModel > &cost_model)=0
Pre-tuning for the search strategy.
virtual void InitializeWithTuneContext(const TuneContext &context)=0
Initialize the search strategy with tuning context.
virtual Optional< Array< MeasureCandidate > > GenerateMeasureCandidates()=0
Generate measure candidates from design spaces for measurement.
virtual void PostTuning()=0
Post-tuning for the search strategy.
virtual ~SearchStrategyNode()=default
Virtual destructor.
virtual SearchStrategy Clone() const =0
Clone the search strategy.
Managed reference to SearchStrategyNode.
Definition: search_strategy.h:140
runtime::TypedPackedFunc< void()> FPostTuning
The function type of PostTuning method.
Definition: search_strategy.h:154
static SearchStrategy ReplayTrace(int max_fail_count)
Constructor of replay trace search strategy.
runtime::TypedPackedFunc< void(const Array< MeasureCandidate > &, const Array< RunnerResult > &)> FNotifyRunnerResults
The function type of NotifyRunnerResults method.
Definition: search_strategy.h:165
static SearchStrategy ReplayFunc()
Constructor of replay func search strategy.
TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS(SearchStrategy, ObjectRef, SearchStrategyNode)
static SearchStrategy PySearchStrategy(FInitializeWithTuneContext f_initialize_with_tune_context, FPreTuning f_pre_tuning, FPostTuning f_post_tuning, FGenerateMeasureCandidates f_generate_measure_candidates, FNotifyRunnerResults f_notify_runner_results, FClone f_clone)
Create a search strategy with customized methods on the python-side.
runtime::TypedPackedFunc< SearchStrategy()> FClone
The function type of Clone method.
Definition: search_strategy.h:170
runtime::TypedPackedFunc< void(const TuneContext &)> FInitializeWithTuneContext
The function type of InitializeWithTuneContext method.
Definition: search_strategy.h:146
static SearchStrategy EvolutionarySearch(int population_size, double init_measured_ratio, int init_min_unmeasured, int max_fail_count, int genetic_num_iters, double genetic_mutate_prob, int genetic_max_fail_count, double eps_greedy)
Constructor of evolutionary search strategy.
runtime::TypedPackedFunc< void(int max_trials, int num_trials_per_iter, const Array< tir::Schedule > &, const Optional< Database > &, const Optional< CostModel > &)> FPreTuning
The function type of PreTuning method.
Definition: search_strategy.h:152
runtime::TypedPackedFunc< Optional< Array< MeasureCandidate > >()> FGenerateMeasureCandidates
The function type of GenerateMeasureCandidates method.
Definition: search_strategy.h:159
Managed reference to TuneContextNode.
Definition: tune_context.h:95
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
Base class of all object reference.
Definition: object.h:517
base class of all object containers.
Definition: object.h:169
Optional container that to represent to a Nullable variant of T.
Definition: optional.h:51
Please refer to TypedPackedFunc<R(Args..)>.
Definition: packed_func.h:61
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
A managed object in the TVM runtime.
Runtime Optional container types.
Type-erased function used across TVM API.
Reflection and serialization of compiler IR/AST nodes.