24 #ifndef TVM_TOPI_TRANSFORM_H_
25 #define TVM_TOPI_TRANSFORM_H_
43 #include <unordered_set>
50 using namespace topi::detail;
71 std::string tag =
"") {
73 auto _axis = size_t(axis);
74 CHECK_LT(_axis, x->shape.size()) <<
"axis must be a valid dimension index of x.";
75 CHECK_EQ(x->shape.size() - _axis, window_shape.
size())
76 <<
"There must be a window shape for every dimension of x "
77 <<
"over which we are sliding the window.";
78 CHECK_EQ(strides.
size(), window_shape.
size()) <<
"Windows and strides should be the same length.";
83 for (
size_t i = 0; i < _axis; ++i) {
89 for (
size_t i = 0; i < window_shape.
size(); ++i) {
91 auto dim_len = x->shape[_axis + i];
93 auto window_len = window_shape[i];
95 auto stride = strides[i];
101 for (
size_t i = 0; i < window_shape.
size(); ++i) {
105 ICHECK(new_shape.
size() == _axis + 2 * window_shape.
size());
114 for (
size_t i = 0; i < _axis; ++i) {
118 for (
size_t i = 0; i < window_shape.
size(); ++i) {
120 auto window_idx = indices[_axis + i];
122 auto idx_within_window = indices[_axis + window_shape.
size() + i];
124 auto stride = strides[i];
126 idx.
push_back(window_idx * stride + idx_within_window);
129 ICHECK(idx.
size() == x->shape.size());
149 std::string name =
"T_expand_dims", std::string tag =
kBroadcast) {
150 int ndim =
static_cast<int>(x->shape.size());
151 ICHECK(-ndim - 1 <= axis && axis <= ndim)
152 <<
"expand_dims only accepts `axis` in [-data.ndim - 1, data.ndim]"
153 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
154 ICHECK(num_newaxis >= 0) <<
"expand_dims only accepts `num_newaxis >= 0`"
155 <<
", but got num_newaxis = " << num_newaxis;
158 axis = ndim + axis + 1;
161 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
164 for (
size_t i = 0; i < static_cast<size_t>(num_newaxis); ++i) {
167 for (
size_t i = axis; i < x->shape.size(); ++i) {
175 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
178 for (
size_t i = axis + num_newaxis; i < indices.
size(); ++i) {
201 for (
int i =
static_cast<int>(x->shape.size()) - 1; i >= 0; --i) {
207 for (
size_t i = 0; i < axes.
size(); ++i) {
208 int axis =
static_cast<int>(axes[i]->value);
211 new_axis =
static_cast<int>(x->shape.size()) + axis;
212 axes.
Set(i, new_axis);
214 ICHECK((new_axis >= 0) && (new_axis <
static_cast<int>(x->shape.size())))
215 <<
"axis=" << axis <<
" is invalid for the " <<
static_cast<int>(x->shape.size())
216 <<
"-dimensional input tensor";
218 for (
size_t j = 0; j < axes.
size(); ++j) {
220 ICHECK(new_axis !=
static_cast<int>(axes[j]->value)) <<
"repeated axis in transpose";
229 std::vector<PrimExpr> idx;
230 for (
size_t i = 0; i < axes.
size(); ++i) {
233 for (
size_t i = 0; i < axes.
size(); ++i) {
234 int axis =
static_cast<int>(axes[i]->value);
235 idx[axis] = indices[i];
257 int batch_axis = 0, std::string name =
"T_reverse_sequence",
259 size_t src_tensor_dim = x->shape.size();
260 int seq_axis_inp = seq_axis;
263 size_t seq_lengths_dim = seq_lengths->shape.size();
264 int batch_axis_inp = batch_axis;
265 if (batch_axis < 0) {
266 batch_axis =
static_cast<int>(x->shape.size()) + batch_axis;
269 ICHECK(seq_lengths_dim == 1) <<
"seq_lengths should be 1D vector";
271 ICHECK(GetConstInt(seq_lengths->shape[0]) == GetConstInt(x->shape[batch_axis]))
272 <<
"For reverse_sequnece seq_lengths size should match with dimension of batch axis"
273 <<
", but got dimension of batch_axis = " << GetConstInt(x->shape[batch_axis])
274 <<
", and seq_length size = " << GetConstInt(seq_lengths->shape[0]);
276 ICHECK((0 <= batch_axis) && (batch_axis <
static_cast<int>(x->shape.size())))
277 <<
"batch_axis=" << batch_axis_inp <<
" is invalid for the "
278 <<
static_cast<int>(x->shape.size()) <<
"-dimensional input tensor";
282 seq_axis =
static_cast<int>(x->shape.size()) + seq_axis;
284 ICHECK((0 <= seq_axis) && (seq_axis <
static_cast<int>(x->shape.size())))
285 <<
"seq_axis=" << seq_axis_inp <<
" is invalid for the " <<
static_cast<int>(x->shape.size())
286 <<
"-dimensional input tensor";
290 for (
size_t i = 0; i < src_tensor_dim; ++i) {
291 if (i ==
static_cast<size_t>(seq_axis)) {
293 auto len = seq_lengths(indices[batch_axis]);
295 len <= 1 || len <= indices[i], indices[i],
296 if_then_else(len > x->shape[i], x->shape[i] - 1 - indices[i], len - 1 - indices[i]));
299 real_indices.
push_back(x->shape[i] - 1 - indices[i]);
305 return x(real_indices);
308 return compute(x->shape, func, name, tag);
323 auto x_shape = x->shape;
326 for (
const auto& ele : newshape) {
331 if (is_empty_shape(target_shape) || is_empty_shape(x->shape)) {
333 target_shape, [&](
const Array<Var>& indices) {
return tvm::cast(x->dtype, 0); }, name, tag);
338 return x(UnravelIndex(
358 auto x_shape = x->shape;
359 auto shape_shape =
shape->shape;
363 if (x_shape.size() != 0) {
369 std::vector<PrimExpr> indices_divs;
374 if (x_shape.size() != 0) {
375 index_val = x[indices[1]];
379 indices_divs.push_back(index_val);
380 for (
int v = GetConstInt(shape_shape[0]) - 1; v >= 0; --v) {
383 indices_divs.push_back(cur_val);
388 return compute(oshape, func, name, tag);
405 std::string name =
"T_squeeze", std::string tag =
kInjective) {
406 auto ndim = x->shape.size();
407 std::vector<int> axis_val;
409 for (
size_t i = 0; i < ndim; ++i) {
410 if (IsConstInt(x->shape[i]) && GetConstInt(x->shape[i]) == 1) {
411 axis_val.push_back(
static_cast<int>(i));
415 for (
size_t i = 0; i < axis.
size(); ++i) {
416 int64_t val = axis[i]->value;
418 val +=
static_cast<int>(x->shape.size());
420 if (IsConstInt(x->shape[val])) {
421 ICHECK_EQ(GetConstInt(x->shape[val]), 1) <<
"Dimension " << val <<
" must have size 1";
427 std::unordered_set<int> axis_set(axis_val.begin(), axis_val.end());
430 for (
size_t i = 0; i < ndim; ++i) {
431 if (axis_set.count(
static_cast<int>(i)) == 0) {
435 if (out_shape.
size() == 0 && atleast1d) {
444 for (
size_t i = 0; i < ndim; ++i) {
445 if (axis_set.count(
static_cast<int>(i)) == 0) {
446 real_indices.push_back(indices[i - flag]);
448 real_indices.push_back(0);
452 return x(real_indices);
469 int ndim =
static_cast<int>(inputs[0]->shape.
size());
470 ICHECK(-ndim <= axis && axis < ndim) <<
"concatenate only accepts `axis` in [-ndim, ndim)"
471 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
475 ICHECK_LT(axis, inputs[0]->
shape.size()) <<
"axis out of bounds";
478 for (
auto t : inputs) {
483 for (
size_t i = 1; i < axis_sizes.
size(); ++i) {
484 join_size += axis_sizes[i];
486 join_size = analyzer.
Simplify(join_size);
488 for (
size_t i = 0; i < inputs[0]->shape.
size(); ++i) {
489 out_shape.
push_back(i ==
static_cast<size_t>(axis) ? join_size : inputs[0]->
shape[i]);
495 auto ret = inputs[0](indices);
496 auto ind = indices[axis];
497 for (
size_t i = 0; i < inputs.
size() - 1; ++i) {
498 ind -= axis_sizes[i];
501 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
505 for (
size_t i = axis + 1; i < indices.
size(); ++i) {
528 int ndim =
static_cast<int>(inputs[0]->shape.
size());
529 ICHECK(-ndim - 1 <= axis && axis <= ndim)
530 <<
"stack only accepts `axis` in [-ndim, ndim)"
531 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
535 ICHECK_LT(axis, inputs[0]->
shape.size() + 1) <<
"axis out of bounds";
537 const int stack_size =
static_cast<int>(inputs.
size());
539 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) out_shape.
push_back(inputs[0]->shape[i]);
541 for (
size_t i =
static_cast<size_t>(axis); i < static_cast<size_t>(ndim); ++i)
542 out_shape.
push_back(inputs[0]->shape[i]);
548 for (
size_t i = 0; i < indices.
size(); ++i)
549 if (i !=
static_cast<size_t>(axis)) idx.
push_back(indices[i]);
550 auto ind = indices[axis];
551 auto ret = inputs[0](idx);
552 for (
int i = 0; i < static_cast<int>(inputs.
size() - 1); ++i) {
573 std::string name =
"T_split", std::string tag =
kInjective) {
575 axis +=
static_cast<int>(x->shape.size());
577 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
579 auto src_axis_size = x->shape[axis];
580 std::vector<PrimExpr> begin_ids;
581 begin_ids.push_back(0);
583 for (
auto idx : split_indices) {
585 auto back_node = begin_ids.back().as<
IntImmNode>();
586 if (idx_node && back_node) {
587 ICHECK_GT(idx_node->value, back_node->
value) <<
"split_indices must be sorted";
589 begin_ids.push_back(idx);
593 for (
size_t i = 0; i < begin_ids.size(); ++i) {
595 if (i == begin_ids.size() - 1) {
596 out_axis_size = src_axis_size - begin_ids[i];
598 out_axis_size = begin_ids[i + 1] - begin_ids[i];
602 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
603 shape.push_back(x->shape[i]);
605 shape.push_back(out_axis_size);
606 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
607 shape.push_back(x->shape[i]);
614 for (
size_t i = 0; i < begin_ids.size(); ++i) {
618 auto begin = begin_ids[i];
620 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
623 real_indices.
push_back(indices[axis] + begin);
624 for (
size_t j = axis + 1; j < indices.
size(); ++j) {
628 return x(real_indices);
651 std::string name =
"T_dynamic_strided_slice",
653 const size_t src_tensor_dim = x->shape.size();
654 ICHECK_LE(begin.
size(), src_tensor_dim);
655 ICHECK_LE(end.
size(), src_tensor_dim);
656 ICHECK_LE(strides.
size(), src_tensor_dim);
657 ICHECK_EQ(begin.
size(), end.
size());
658 ICHECK_EQ(begin.
size(), strides.
size());
660 const size_t num_slice_axes = begin.
size();
663 for (
size_t i = 0; i < num_slice_axes; ++i) {
664 auto d =
indexdiv(end[i] - begin[i], strides[i]);
673 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
681 for (
size_t i = 0; i < num_slice_axes; ++i) {
682 real_indices.
push_back(indices[i] * strides[i] +
tvm::min(begin[i], x->shape[i] - 1));
685 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
688 return x(real_indices);
708 std::string name =
"T_strided_slice_dynamic",
710 DataType index_dtype = begin->shape[0]->dtype;
711 const int64_t num_dynamic_axes = begin->shape[0].
as<
IntImmNode>()->value;
716 for (int64_t i = 0; i < num_dynamic_axes; ++i) {
743 std::vector<int64_t> begin_vec, end_vec, strides_vec;
744 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
745 auto begin_canonicalized = StridedSliceCanonicalizeBegin(ishape, begin_vec, strides_vec, axes,
746 begin[0]->dtype, slice_mode);
748 begin_canonicalized,
true);
770 std::string name =
"T_strided_slice_with_axes",
772 const size_t src_tensor_dim = x->shape.size();
773 ICHECK(axes.
size() <= src_tensor_dim);
776 std::vector<int64_t> begin_vec, end_vec, strides_vec;
777 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
779 auto begin_expr = StridedSliceCanonicalizeBegin(x->shape, begin_vec, strides_vec, axes,
780 begin[0]->dtype, slice_mode);
782 slice_mode, begin_expr);
788 for (
size_t i = 0; i < out_shape.size(); ++i) real_indices.
push_back(indices[i]);
789 for (
size_t i = 0; i < axes.
size(); ++i) {
790 auto stride =
make_const(strides[i].dtype(), strides_vec[i]);
791 PrimExpr ind = indices[axes[i].IntValue()] * stride + begin_expr[i];
792 real_indices.
Set(axes[i].IntValue(), ind);
794 return x(real_indices);
815 std::string name =
"T_strided_slice", std::string tag =
kInjective) {
816 size_t src_tensor_dim =
static_cast<size_t>(x->shape.size());
818 for (
size_t i = 0; i < src_tensor_dim; ++i) axes.
push_back(i);
828 for (
size_t i = strides.
size(); i < src_tensor_dim; ++i) {
831 for (
size_t i = begin.
size(); i < src_tensor_dim; ++i) {
832 begin_full.
push_back(GetConstInt(strides_full[i]) > 0 ? zero : max_range);
834 for (
size_t i = end.
size(); i < src_tensor_dim; ++i) {
835 end_full.
push_back(GetConstInt(strides_full[i]) < 0 ? zero : max_range);
855 std::string name =
"T_split_sections",
858 axis +=
static_cast<int>(x->shape.size());
860 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
862 auto src_axis_size = x->shape[axis];
864 ICHECK_GT(num_sections, 0) <<
"Slice count must be > 0";
866 if (
auto node = src_axis_size.as<
IntImmNode>()) {
867 ICHECK_EQ(node->value % num_sections, 0)
868 <<
"num_sections must be an integer factor of the size of axis " << axis <<
" ("
869 << node->value <<
")";
873 auto seg_size =
indexdiv(src_axis_size, num_sections);
874 for (
int i = 0; i < num_sections; ++i) {
881 return split(x, split_indices, axis, name, tag);
897 std::string mode =
"clip", std::string name =
"T_take",
902 for (
size_t i = 0; i < a_shape.
size(); ++i) {
903 a_size = a_size * a_shape[i];
906 if (mode ==
"clip") {
911 return a(UnravelIndex(idx, a_shape));
914 }
else if (mode ==
"fast") {
915 LOG(WARNING) <<
"Fast mode segfaults when there are out-of-bounds indices. "
916 "Make sure input indices are in bound";
919 [&](
const Array<Var>& out_index) {
return a(UnravelIndex(indices(out_index), a_shape)); },
926 return a(UnravelIndex(idx, a_shape));
945 int axis, std::string name =
"T_sequence_mask",
947 ICHECK(axis == 0 || axis == 1) <<
"axis must be either 0 or 1";
948 ICHECK_EQ(valid_length->shape.size(), 1) <<
"valid_length must have ndim=1, i.e., (batch_size,).";
949 auto length_dim = data->shape[axis];
950 auto batch_dim = data->shape[1 - axis];
956 auto tid = out_index[axis];
957 auto bid = out_index[1 - axis];
983 std::string mode =
"clip", std::string name =
"T_take",
986 axis +=
static_cast<int>(a->shape.size());
988 ICHECK_GE(axis, 0) <<
"axis out of bounds";
989 ICHECK_LT(axis, a->shape.size()) <<
"axis out of bounds";
990 auto axis_dim = a->shape[axis];
991 int indices_len =
static_cast<int>(indices->shape.size());
993 int batch_dims_ = batch_dims;
994 if (batch_dims_ != 0) {
995 ICHECK_GE(batch_dims_, -
static_cast<int>(indices->shape.size())) <<
"batch_dims out of bounds";
996 ICHECK_LE(batch_dims_, indices->shape.size()) <<
"batch_dims out of bounds";
998 if (batch_dims_ < 0) {
999 batch_dims_ = indices->shape.size() + batch_dims_;
1002 ICHECK_LT(batch_dims_, a->shape.size()) <<
"batch_dims out of bounds";
1003 ICHECK_LE(batch_dims_, axis) <<
"batch_dims must be less than or equal to axis";
1004 for (
int i = 0; i < batch_dims_; ++i) {
1005 auto addr1 = a->shape[i];
1006 auto addr2 = indices->shape[i];
1007 auto v1 =
static_cast<IntImm*
>(&addr1)->get()->value;
1008 auto v2 =
static_cast<IntImm*
>(&addr2)->get()->value;
1009 ICHECK_EQ(v1, v2) <<
"a.shape[" << i <<
"] should be equal to indices.shape[" << i <<
"]";
1017 for (
int i = 0; i < batch_dims_; ++i) {
1020 for (
int i = batch_dims_; i < axis; ++i) {
1023 for (
size_t i =
static_cast<size_t>(batch_dims_); i < indices->shape.size(); ++i) {
1026 for (
size_t i = axis + 1; i < a->shape.size(); ++i) {
1030 if (mode ==
"clip") {
1031 if (batch_dims_ == 0) {
1036 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1037 indices_position.
push_back(out_index[j]);
1040 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1045 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1048 return a(real_indices);
1056 for (
size_t j = 0; j < static_cast<size_t>(batch_dims_); ++j) {
1057 indices_position.
push_back(out_index[j]);
1059 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len - batch_dims_); ++j) {
1060 indices_position.
push_back(out_index[j]);
1063 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1068 for (
size_t j = axis + indices_len - batch_dims_; j < out_index.
size(); ++j) {
1071 return a(real_indices);
1075 }
else if (mode ==
"fast") {
1076 LOG(WARNING) <<
"Fast mode segfaults when there are out-of-bounds indices. "
1077 "Make sure input indices are in bound";
1082 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1083 indices_position.
push_back(out_index[j]);
1086 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1089 real_indices.
push_back(indices(indices_position));
1090 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1093 return a(real_indices);
1101 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1102 indices_position.
push_back(out_index[j]);
1105 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1108 auto idx =
truncmod(
truncmod(indices(indices_position), axis_dim) + axis_dim, axis_dim);
1110 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1113 return a(real_indices);
1131 std::string name =
"T_where", std::string tag =
kBroadcast) {
1132 ICHECK_EQ(x->dtype, y->dtype) <<
"x and y must have the same dtype: " << x->dtype <<
" vs "
1134 auto get_out_shape = [&]() {
1135 auto bh1 = detail::BroadcastShape(x->shape, y->shape);
1136 Array<PrimExpr> common_shape1(bh1.common_shape.begin(), bh1.common_shape.end());
1137 auto bh2 = detail::BroadcastShape(condition->shape, common_shape1);
1138 Array<PrimExpr> common_shape2(bh2.common_shape.begin(), bh2.common_shape.end());
1139 return common_shape2;
1142 auto oshape = get_out_shape();
1144 auto c_bh = detail::BroadcastShape(condition->shape, oshape);
1145 auto x_bh = detail::BroadcastShape(x->shape, oshape);
1146 auto y_bh = detail::BroadcastShape(y->shape, oshape);
1149 auto c = condition(InputIndexFromBroadcast(ovars, condition, c_bh.vars1, c_bh.all_vars));
1150 auto true_val = x(InputIndexFromBroadcast(ovars, x, x_bh.vars1, x_bh.all_vars));
1151 auto false_val = y(InputIndexFromBroadcast(ovars, y, y_bh.vars1, y_bh.all_vars));
1155 return compute(oshape, select, name, tag);
1172 int ndim =
static_cast<int>(x->shape.size());
1173 ICHECK(-ndim - 1 <= axis && axis <= ndim)
1174 <<
"repeat only accepts `axis` in [-data.ndim - 1, data.ndim]"
1175 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
1176 ICHECK(repeats >= 1) <<
"repeat only accepts `repeats >= 1`"
1177 <<
", but got repeats = " << repeats;
1183 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1186 new_shape.
push_back(repeats * x->shape[axis]);
1187 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
1195 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1199 for (
size_t i = axis + 1; i < indices.
size(); ++i) {
1219 size_t ndim = x->shape.size();
1220 size_t rdim = reps.
size();
1221 size_t tdim = (ndim > rdim) ? ndim : rdim;
1226 for (
size_t i = 0; i < ndim; ++i) {
1230 }
else if (ndim > rdim) {
1231 for (
size_t i = 0; i < ndim; ++i) data_shape.
push_back(x->shape[i]);
1232 for (
size_t i = 0; i < (ndim - rdim); ++i) reps_shape.
push_back(1);
1233 for (
size_t i = 0; i < rdim; ++i) reps_shape.
push_back(reps[i]);
1235 for (
size_t i = 0; i < (rdim - ndim); ++i) data_shape.
push_back(1);
1236 for (
size_t i = 0; i < ndim; ++i) data_shape.
push_back(x->shape[i]);
1237 for (
size_t i = 0; i < rdim; ++i) reps_shape.
push_back(reps[i]);
1239 for (
size_t i = 0; i < tdim; ++i) new_shape.
push_back(data_shape[i] * reps_shape[i]);
1241 if (is_empty_shape(new_shape)) {
1250 for (
size_t i = 0; i < ndim; ++i) idx.
push_back(
indexmod(indices[i], x->shape[i]));
1252 for (
size_t i = 0; i < ndim; ++i)
1273 std::string name =
"T_tile", std::string tag =
kBroadcast) {
1274 size_t ndim = x->shape.size();
1275 if (is_empty_shape(new_shape)) {
1284 for (
size_t i = 0; i < ndim; ++i) {
1288 for (
size_t i = 0; i < ndim; ++i) {
1310 std::string name =
"T_gather", std::string tag =
kInjective) {
1311 size_t ndim_d = data->shape.size();
1312 size_t ndim_i = indices->shape.size();
1313 ICHECK_GE(ndim_d, 1) <<
"Cannot gather from a scalar.";
1314 ICHECK_EQ(ndim_d, ndim_i);
1319 ICHECK_LT(axis, ndim_d);
1321 size_t indices_dim_i =
static_cast<size_t>(GetConstInt(indices->shape[axis]));
1322 ICHECK_GE(indices_dim_i, 1);
1324 ICHECK(indices->dtype.is_int() || indices->dtype.is_uint());
1327 for (
size_t i = 0; i < ndim_i; ++i) {
1335 for (
size_t i = 0; i < ndim_i; ++i) {
1336 indices_position.
push_back(out_index[i]);
1339 for (
size_t i = 0; i < ndim_i; ++i) {
1340 if (i ==
static_cast<size_t>(axis)) {
1341 real_indices.
push_back(indices(indices_position));
1343 real_indices.
push_back(indices_position[i]);
1346 return data(real_indices);
1363 std::string name =
"T_gather_nd", std::string tag =
kInjective) {
1364 size_t ndim_d = data->shape.size();
1365 size_t ndim_i = indices->shape.size();
1366 ICHECK_GE(ndim_i, 1) <<
"indices tensor must have at least 1 dimensions";
1367 size_t indices_dim0 =
static_cast<size_t>(GetConstInt(indices->shape[0]));
1368 ICHECK_LE(indices_dim0, ndim_d) <<
"dim 0 of indices tensor must be no more "
1369 <<
"than dimensions of data tensor";
1371 for (
size_t i = 1; i < ndim_i; ++i) {
1374 for (
size_t i = indices_dim0 + batch_dims; i < ndim_d; ++i) {
1382 for (
size_t i = 0; i < ndim_i - 1; ++i) {
1383 indices_position.
push_back(out_index[i]);
1386 for (
size_t i = 0; i < static_cast<size_t>(batch_dims); ++i) {
1389 for (
size_t i = 0; i < indices_dim0; ++i) {
1391 if (indices->dtype.is_int() || indices->dtype.is_uint()) {
1392 real_indices.
push_back(indices(indices_position));
1397 if (real_indices.
size() == ndim_d) {
1398 return data(real_indices);
1400 for (
size_t i = ndim_i - 1; i < out_index.
size(); ++i) {
1403 return data(real_indices);
1424 bool trans_a =
false,
bool trans_b =
false,
1425 std::string name =
"T_matmul", std::string tag =
kMatMul) {
1429 return tvm::sum((trans_a ? A[k][i] : A[i][k]) * (trans_b ? B[j][k] : B[k][j]), {k});
1446 std::string name =
"T_tensordot", std::string tag =
kMatMul) {
1447 ICHECK_GE(A->shape.size(), axes);
1448 ICHECK_GE(B->shape.size(), axes);
1450 Array<PrimExpr> output_shape(A->shape.begin(), A->shape.end() + (-axes));
1451 for (
auto it = B->shape.begin() + axes; it != B->shape.end(); ++it) output_shape.
push_back(*it);
1454 for (
int i = 0; i < axes; ++i)
1457 auto func = [&A, &B, &iter_vars, axes](
const Array<Var>& input_indices) {
1459 input_indices.begin() + (A->shape.size() - axes));
1460 for (
auto& v : iter_vars) A_indices.
push_back(v);
1463 for (
auto& v : iter_vars) B_indices.
push_back(v);
1465 auto it = input_indices.begin() + (A->shape.size() - axes);
1466 for (; it != input_indices.end(); ++it) B_indices.
push_back(*it);
1469 if (iter_vars.empty()) {
1470 return A(A_indices) * B(B_indices);
1472 return sum(A(A_indices) * B(B_indices), iter_vars);
1476 return compute(output_shape, func, name, tag);
1494 ICHECK_EQ(A_axes.
size(), B_axes.
size());
1496 auto A_axes_val = GetConstIntValues(A_axes,
"A_axes");
1497 auto B_axes_val = GetConstIntValues(B_axes,
"B_axes");
1500 for (
unsigned i = 0; i < A->shape.size(); ++i)
1501 if (std::find(A_axes_val.begin(), A_axes_val.end(), i) == A_axes_val.end())
1503 for (
unsigned i = 0; i < B->shape.size(); ++i)
1504 if (std::find(B_axes_val.begin(), B_axes_val.end(), i) == B_axes_val.end())
1508 for (
unsigned i = 0; i < B_axes_val.size(); ++i)
1511 auto func = [&A, &B, &iter_vars, A_axes_val, B_axes_val](
const Array<Var>& input_indices) {
1514 for (
unsigned i = 0; i < A->shape.size(); ++i) {
1515 auto axes_pos = std::find(A_axes_val.begin(), A_axes_val.end(), i);
1516 if (axes_pos == A_axes_val.end()) {
1517 A_indices.
push_back(input_indices[idx_input++]);
1519 A_indices.
push_back(iter_vars[axes_pos - A_axes_val.begin()]);
1524 for (
unsigned i = 0; i < B->shape.size(); ++i) {
1525 auto axes_pos = std::find(B_axes_val.begin(), B_axes_val.end(), i);
1526 if (axes_pos == B_axes_val.end()) {
1527 B_indices.
push_back(input_indices[idx_input++]);
1529 B_indices.
push_back(iter_vars[axes_pos - B_axes_val.begin()]);
1532 return sum(A(A_indices) * B(B_indices), iter_vars);
1534 return compute(output_shape, func, name, tag);
1544 [&](
const Array<Var>& indices) {
return tvm::cast(dtype, start + step * indices[0]); }, name,
1559 std::string name =
"T_meshgrid", std::string tag =
kInjective) {
1560 const bool cartesian_indexing = indexing ==
"xy" && inputs.
size() >= 2;
1562 for (
size_t i = 0; i < inputs.
size(); ++i) {
1563 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1564 out_shape.
push_back(inputs[src_index]->
shape.size() == 0 ? 1 : inputs[src_index]->shape[0]);
1567 for (
size_t i = 0; i < inputs.
size(); ++i) {
1571 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1572 auto ndim = inputs[i]->GetShape().
size();
1575 real_indices = {indices[src_index]};
1577 return inputs[i](real_indices);
1595 const std::string& dst_layout,
1596 const std::string schedule_rule =
"None",
1597 const std::string name =
"T_layout_trans",
1599 Layout src_layout_struct(src_layout);
1600 Layout dst_layout_struct(dst_layout);
1602 if (src_layout_struct.
Equals(dst_layout_struct)) {
1606 ICHECK(src_layout_struct.
defined() && dst_layout_struct.
defined())
1607 <<
"cannot convert from/to undefined layout";
1610 ICHECK(layout_converter.defined())
1611 <<
"cannot convert from " << src_layout <<
" to " << dst_layout;
1613 Array<PrimExpr> dst_shape = layout_converter.ForwardShape(src->shape);
1617 {
"src_layout",
String(src_layout)},
1618 {
"dst_layout",
String(dst_layout)},
1619 {
"input_shape", src->shape}};
1625 Array<PrimExpr> src_indices = layout_converter.BackwardIndex(dst_indices_expr);
1627 for (
size_t i = 0; i < src.
ndim(); ++i) {
1628 in_range = in_range && (src_indices[i] < src->shape[i]);
1637 std::vector<std::string>* axes) {
1639 std::string axis =
"";
1640 for (
char c : std::string(layout)) {
1641 if (c >=
'A' && c <=
'z') {
1644 shape->push_back(factor);
1647 }
else if (c >=
'0' && c <=
'9') {
1648 factor = factor * 10 + c -
'0';
1649 if (!axis.empty()) {
1650 axes->push_back(axis);
1654 LOG(FATAL) <<
"Invalid layout " << layout;
1657 if (!axis.empty()) {
1658 axes->push_back(axis);
1673 const String& dst_layout,
1674 const String name =
"T_auto_scheduler_layout_trans",
1677 std::vector<std::string> src_axes;
1679 std::vector<std::string> dst_axes;
1688 for (
const std::string& src_axis : src_axes) {
1690 CHECK_EQ(dst_indices_expr.
size(), dst_axes.size());
1691 for (
size_t i = 0; i < dst_axes.size(); ++i) {
1692 if (dst_axes[i] == src_axis) {
1693 src_index = src_index * dst_shape[i] + dst_indices_expr[i];
1698 return src(src_indices);
1740 const String name =
"T_meta_schedule_layout_trans",
1744 iter_domain.
reserve(src->shape.size());
1745 for (
const PrimExpr& e : src->shape) {
1748 Array<PrimExpr> post_transform_shape = index_map->MapShape(src->shape, &analyzer);
1750 post_transform_shape,
1751 [src, inv = index_map.
Inverse(iter_domain, &analyzer),
1753 return src(inv->MapIndices(Array<PrimExpr>{indices.begin(), indices.end()}, &analyzer));
1768 int ndim =
static_cast<int>(src->shape.size());
1773 auto idx = indices[0];
1775 for (
int i = 0; i < ndim; ++i) {
1792 const std::string& name =
"ndarray_size",
1794 int ndim =
static_cast<int>(src->shape.size());
1800 for (
int i = 0; i < ndim; ++i) {
1801 ret *= src->shape[i];
1823 int depth,
int axis,
const DataType& dtype,
1825 const std::string name =
"T_one_hot",
const std::string tag =
kInjective) {
1826 int true_axis = (axis == -1) ? indices->shape.size() : axis;
1827 if (oshape.size() == 0) {
1828 int ndim = indices->shape.size() + 1;
1829 int indices_index = 0;
1830 for (
int i = 0; i < ndim; i++) {
1831 if (i == true_axis) {
1832 oshape.push_back(
Integer(depth));
1834 oshape.push_back(indices->shape[indices_index++]);
1845 for (
size_t i = 0; i < iter_vars.
size(); i++) {
1846 if (
static_cast<int>(i) == true_axis) {
1850 indices_indices.
push_back(iter_vars[i]);
1853 auto idx = iter_vars[true_axis];
1854 return tir::Select(indices(indices_indices) == idx, on_value_cast, off_value_cast);
1871 const std::string name =
"T_sparse_to_dense",
1873 ICHECK(sparse_indices->dtype.is_int()) <<
"sparse_indices only accepts integer values";
1874 ICHECK_LE(sparse_indices->shape.size(), 3)
1875 <<
"sparse_indices tensor should be 0D, 1D, or 2D only";
1876 ICHECK_LE(sparse_values->shape.size(), 2) <<
"sparse_values tensor should be 0D or 1D only";
1878 const auto rank_sparse_indices =
static_cast<int>(sparse_indices->shape.size());
1880 for (
auto l : output_shape) {
1887 if (0 == rank_sparse_indices) {
1889 }
else if (1 == rank_sparse_indices) {
1890 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
1894 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
1896 for (
int k = 0; k < GetConstInt(sparse_indices->shape[1]); k++) {
1897 PrimExpr comparision = indices[k] == sparse_indices[j][k];
1898 aggregate_condition = 0 == k ? comparision : aggregate_condition && comparision;
1921 bool super_diag_right_align,
bool sub_diag_right_align,
1922 const std::string name =
"T_matrix_set_diag",
1924 size_t ndim = input->shape.size() - 1;
1926 bool only_one_diagonal = k1 == k2;
1931 auto get_diag = [&]() {
1932 Array<PrimExpr> diagonal_indices;
1933 PrimExpr k, offset = 0;
1934 for (size_t i = 0; i < ndim - 1; i++) {
1935 diagonal_indices.push_back(iter_vars[i]);
1937 if (only_one_diagonal) {
1941 k = iter_vars[ndim] - iter_vars[ndim - 1];
1942 diagonal_indices.push_back(k2 - k);
1945 auto get_offset = [&](PrimExpr M, PrimExpr N) {
1947 return diagonal->shape[diagonal->shape.size() - 1] - if_then_else(M < N, M, N);
1949 offset = if_then_else(
1951 super_diag_right_align ? get_offset(input->shape[ndim] - k, input->shape[ndim - 1])
1953 sub_diag_right_align ? get_offset(input->shape[ndim], input->shape[ndim - 1] + k)
1956 diagonal_indices.push_back(if_then_else(k >= 0, iter_vars[ndim - 1], iter_vars[ndim]) +
1958 return diagonal(diagonal_indices);
1962 get_diag(), input(iter_vars)),
1977 const std::string name =
"advanced_index",
1979 ICHECK_LE(indices.
size(), data->shape.size()) <<
"too many indices for data!";
1984 broadcast_shape = indices[0]->shape;
1985 for (
size_t i = 1; i < indices.
size(); ++i) {
1986 auto bh = detail::BroadcastShape(broadcast_shape, indices[i]->
shape);
1987 broadcast_shape =
Array<PrimExpr>(bh.common_shape.begin(), bh.common_shape.end());
1989 if (indices.
size() == 1) {
1994 for (
size_t i = 0; i < indices.
size(); ++i) {
1999 for (
const auto& dim : broadcast_shape) {
2002 for (
size_t i = indices.
size(); i < data->
shape.size(); ++i) {
2010 for (
size_t i = 0; i < broadcast_shape.
size(); ++i) {
2015 for (
size_t i = 0; i < bindices.
size(); ++i) {
2016 real_indices.
push_back(bindices[i](tensor_indices));
2018 for (
size_t i = broadcast_shape.
size(); i < iter_var.
size(); ++i) {
2019 real_indices.push_back(iter_var[i]);
2022 return data(real_indices);
Algebra expression simplifications.
Broadcast op constructions.
Constant integer literals in the program.
Definition: expr.h:491
int64_t value
the Internal value.
Definition: expr.h:494
Managed reference class to IntImmNode.
Definition: expr.h:520
Container of constant int that adds more constructors.
Definition: expr.h:622
Reference to PrimExprNode.
Definition: expr.h:114
DataType dtype() const
Definition: expr.h:128
Range container
Definition: expr.h:715
static Range FromMinExtent(PrimExpr min, PrimExpr extent, Span span=Span())
construct a new range with min and extent The corresponding constructor is removed,...
Analyzer that contains bunch of sub-analyzers.
Definition: analyzer.h:600
PrimExpr Simplify(const PrimExpr &expr, int steps=2)
Simplify expr.
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
void reserve(int64_t n)
Make sure the list has the capacity of at least n.
Definition: array.h:569
iterator end() const
Definition: array.h:390
void push_back(const T &item)
push a new item to the back of the list
Definition: array.h:457
void Set(int64_t i, T value)
set i-th element of the array.
Definition: array.h:621
iterator begin() const
Definition: array.h:387
size_t size() const
Definition: array.h:420
Runtime primitive data type.
Definition: data_type.h:42
static DataType Float(int bits, int lanes=1)
Construct an float type.
Definition: data_type.h:190
static DataType Int(int bits, int lanes=1)
Construct an int type.
Definition: data_type.h:176
Map container of NodeRef->NodeRef in DSL graph. Map implements copy on write semantics,...
Definition: map.h:1271
bool defined() const
Definition: object.h:550
const ObjectType * as() const
Try to downcast the internal Object to a raw pointer of a corresponding type.
Definition: object.h:894
Reference to string objects.
Definition: string.h:98
Tensor structure representing a possible input, or intermediate computation result.
Definition: tensor.h:102
size_t ndim() const
Definition: tensor.h:214
Bijective function mapping for data layout transformation. Given two Layout, BijectiveLayout build an...
Definition: data_layout.h:332
Definition: index_map.h:176
IndexMap Inverse(Array< Range > initial_ranges, arith::Analyzer *analyzer) const
Generate the inverse mapping.
Managed reference to LayoutNode.
Definition: data_layout.h:123
bool Equals(const Layout &rhs) const
Whether the two layouts are equal.
Definition: data_layout.h:278
Managed reference to SelectNode.
Definition: expr.h:609
a named variable in TIR
Definition: var.h:88
Utility functions for handling constants in TVM expressions.
Layout expression to describe the data organization of a tensor. And BijectiveLayout to mapping two d...
Defines a remapping of buffer indices.
Tensor expression language DSL.
Definition: extracted_task.h:33
IterVar reduce_axis(Range dom, std::string name="rv")
Create a new IterVar for reduction operations.
Tensor compute(Array< PrimExpr > shape, FCompute fcompute, std::string name="tensor", std::string tag="", Map< String, ObjectRef > attrs={})
Construct a new tensor by computing over shape, using the computation rule: result_tensor[axis] = fco...
PrimExpr make_const(DataType t, ValueType value, Span span=Span())
Make a const value with certain data type.
Definition: op.h:961
PrimExpr make_zero(DataType t, Span span=Span())
Make a const zero expr.
Definition: op.h:969
Tensor sequence_mask(const Tensor &data, const Tensor &valid_length, double mask_value, int axis, std::string name="T_sequence_mask", std::string tag=kInjective)
Mask the out-of-boundary elements of each sequence.
Definition: transform.h:944
Tensor gather_nd(const Tensor &data, const Tensor &indices, int batch_dims=0, std::string name="T_gather_nd", std::string tag=kInjective)
Gather elements from a n-dimension array.
Definition: transform.h:1362
constexpr auto kBroadcast
Definition: tags.h:36
Tensor transpose(const Tensor &x, Array< Integer > axes, std::string name="T_transpose", std::string tag=kInjective)
Permute the dimensions of an array.
Definition: transform.h:197
Tensor arange(const PrimExpr &start, const PrimExpr &stop, const PrimExpr &step, DataType dtype, std::string name="T_arange", std::string tag=kInjective)
Definition: transform.h:1537
Tensor strided_slice(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, std::string slice_mode="end", std::string name="T_strided_slice", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:813
constexpr auto kInjective
Definition: tags.h:33
Tensor dynamic_strided_slice(const Tensor &x, const Array< PrimExpr > &begin, const Array< PrimExpr > &end, const Array< PrimExpr > &strides, std::string name="T_dynamic_strided_slice", std::string tag=kInjective)
strided_slice of a tensor where begin/end/stride can be mixed static and dynamic
Definition: transform.h:649
Tensor sliding_window(const Tensor &x, int axis, Array< Integer > window_shape, Array< Integer > strides, std::string name="T_sliding_window", std::string tag="")
Creates an operation to slide a window over the input x.
Definition: transform.h:69
Tensor reshape(const Tensor &x, Array< PrimExpr > newshape, std::string name="T_reshape", std::string tag=kInjective)
Reshape a tensor.
Definition: transform.h:321
Tensor one_hot(const Tensor &indices, const PrimExpr on_value, const PrimExpr off_value, int depth, int axis, const DataType &dtype, Array< PrimExpr > oshape=Array< PrimExpr >(), const std::string name="T_one_hot", const std::string tag=kInjective)
Returns a one-hot tensor where the locations repsented by indices take value on_value,...
Definition: transform.h:1822
Tensor meta_schedule_layout_transform(const Tensor &src, const tir::IndexMap &index_map, const String name="T_meta_schedule_layout_trans", const String tag=kInjective)
Transform the meta-schedule generated layout according to TIR's IndexMap.
Definition: transform.h:1739
Array< Tensor > meshgrid(const Array< Tensor > &inputs, const std::string &indexing, std::string name="T_meshgrid", std::string tag=kInjective)
Produce grids by expanding input over dimensions defined by other inputs.
Definition: transform.h:1558
Tensor tile(const Tensor &x, Array< Integer > reps, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1217
tvm::te::Tensor broadcast_to(const tvm::te::Tensor &t, const tvm::Array< tvm::PrimExpr > &output_shape, std::string name="T_broadcast_to", std::string tag=kBroadcast)
Creates an operation that broadcasts a tensor into a compatible shape according to numpy's rules.
Definition: broadcast.h:48
Tensor dyn_tile(const Tensor &x, Array< PrimExpr > new_shape, size_t rdim, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1272
Tensor adv_index(const Tensor &data, const Array< Tensor > &indices, const std::string name="advanced_index", const std::string tag=kInjective)
Numpy style advanced indexing with tensor.
Definition: transform.h:1976
Tensor concatenate(const Array< Tensor > &inputs, int axis=0, std::string name="T_concat", std::string tag=kInjective)
Join a sequence of tensors along an existing axis.
Definition: transform.h:467
void parse_auto_scheduler_layout(const String &layout, Array< PrimExpr > *shape, std::vector< std::string > *axes)
Utility function for auto_scheduler_layout_transform.
Definition: transform.h:1636
Tensor cast(const Tensor &x, DataType type, std::string name="T_cast", std::string tag=kElementWise)
Cast each element of x to the given type. If expr is scalar and type is a corresponding vector type,...
Definition: elemwise.h:281
Tensor expand_dims(const Tensor &x, int axis, int num_newaxis=1, std::string name="T_expand_dims", std::string tag=kBroadcast)
Creates an operation to insert new dimensions of length 1.
Definition: transform.h:148
Tensor squeeze(const Tensor &x, Array< Integer > axis, bool atleast1d=false, std::string name="T_squeeze", std::string tag=kInjective)
Remove size 1 dimensions from the shape of a tensor. The removed dimensions must have a constant size...
Definition: transform.h:404
Tensor sparse_to_dense(const Tensor &sparse_indices, const Array< PrimExpr > &output_shape, const Tensor &sparse_values, const PrimExpr &default_value, const std::string name="T_sparse_to_dense", const std::string tag=kInjective)
Get a dense tensor.
Definition: transform.h:1869
Tensor unravel_index(const Tensor &x, const Tensor &shape, std::string name="T_unravel", std::string tag=kInjective)
Converts a flat index or array of flat indices into a tuple of coordinate arrays.
Definition: transform.h:356
Tensor auto_scheduler_layout_transform(const Tensor &src, const String &src_layout, const String &dst_layout, const String name="T_auto_scheduler_layout_trans", const String tag=kInjective)
Transform the auto-scheduler generated layout according to src_layout and dst_layout.
Definition: transform.h:1672
Tensor ndarray_size(const Tensor &src, const DataType &dtype, const std::string &name="ndarray_size", const std::string &tag=kInjective)
Get the size of input tensor.
Definition: transform.h:1791
Tensor layout_transform(const Tensor &src, const std::string &src_layout, const std::string &dst_layout, const std::string schedule_rule="None", const std::string name="T_layout_trans", const std::string tag=kInjective)
Transform the layout according to src_layout and dst_layout.
Definition: transform.h:1594
Tensor take(const Tensor &a, const Tensor &indices, int batch_dims, std::string mode="clip", std::string name="T_take", std::string tag=kInjective)
Take elements from an flattened input array when axis is None.
Definition: transform.h:896
constexpr auto kMatMul
Definition: tags.h:37
Tensor reverse_sequence(const Tensor &x, const Tensor &seq_lengths, int seq_axis=1, int batch_axis=0, std::string name="T_reverse_sequence", std::string tag=kInjective)
Reverse the tensor for variable length slices. Input is first sliced along batch axis and then elemen...
Definition: transform.h:256
Tensor sum(const Tensor &data, const Array< Integer > &axis, bool keepdims=false, bool atleast1d=false)
Creates an operation that sums array elements over a given axis.
Definition: reduction.h:326
Tensor tensordot(const Tensor &A, const tvm::te::Tensor &B, int axes=2, std::string name="T_tensordot", std::string tag=kMatMul)
A generalization of matrix multiplication to tensors.
Definition: transform.h:1445
Tensor stack(const Array< Tensor > &inputs, int axis=0, std::string name="T_stack", std::string tag=kInjective)
Join a sequence of tensors along a new axis.
Definition: transform.h:526
Array< Tensor > split_sections(const Tensor &x, int num_sections, int axis, std::string name="T_split_sections", std::string tag=kInjective)
Split a tensor into a number of sub-tensors.
Definition: transform.h:854
Tensor strided_slice_with_axes(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, std::string slice_mode="end", std::string name="T_strided_slice_with_axes", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:767
tvm::te::Tensor matmul(const tvm::te::Tensor &A, const tvm::te::Tensor &B, bool trans_a=false, bool trans_b=false, std::string name="T_matmul", std::string tag=kMatMul)
Creates an operation that calculates a matrix multiplication (row-major notation): A(i,...
Definition: transform.h:1423
Tensor matrix_set_diag(const Tensor &input, const Tensor &diagonal, int k1, int k2, bool super_diag_right_align, bool sub_diag_right_align, const std::string name="T_matrix_set_diag", const std::string tag=kInjective)
Returns a tensor with the diagonal of input tensor replaced with the provided diagonals.
Definition: transform.h:1920
Tensor where(const Tensor &condition, const Tensor &x, const Tensor &y, std::string name="T_where", std::string tag=kBroadcast)
Return the elements, either from x or y, depending on the condition.
Definition: transform.h:1130
Tensor shape(const Tensor &src, DataType dtype, const std::string name="T_shape", const std::string tag=kInjective)
Get the shape of input tensor.
Definition: transform.h:1766
Tensor gather(const Tensor &data, int axis, const Tensor &indices, std::string name="T_gather", std::string tag=kInjective)
Gather values along given axis from given indices.
Definition: transform.h:1309
Array< Tensor > split(const Tensor &x, Array< PrimExpr > split_indices, int axis, std::string name="T_split", std::string tag=kInjective)
Split a tensor into multiple sub-tensors.
Definition: transform.h:572
Tensor repeat(const Tensor &x, int repeats, int axis, std::string name="T_repeat", std::string tag=kBroadcast)
Creates an operation to repeat elements of an array.
Definition: transform.h:1170
Array< PrimExpr > StridedSliceOutputShape(const Array< PrimExpr > &ishape, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, const std::string &slice_mode)
Calculate the output shape of strided_slice, the entry point for Relay type relation.
Definition: transform.h:739
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
PrimExpr ret(PrimExpr value, Span span=Span())
Return the value.
PrimExpr max(PrimExpr a, PrimExpr b, Span span=Span())
take maximum of two values
PrimExpr truncmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder of truncdiv
PrimExpr if_then_else(PrimExpr cond, PrimExpr true_value, PrimExpr false_value, Span span=Span())
Conditional expression.
PrimExpr cast(const DataType &t, PrimExpr value, Span span=Span())
cast value to type.
PrimExpr max_value(const DataType &dtype, Span span=Span())
PrimExpr ceil(PrimExpr x, Span span=Span())
Calculate ceil(x)
PrimExpr indexdiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b) where a and b are non-negative.
PrimExpr min(PrimExpr a, PrimExpr b, Span span=Span())
take minimum of two values
PrimExpr indexmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder floor(a / b) where a and b are non-negative.
PrimExpr floordiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b)
PrimExpr sum(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
sum of source expression over axis
Operation node can generate one or multiple Tensors.
Index ravel and unraval operations.
Utility functions for strided_slice op.
Utility functions for handling tensor.