tvm.auto_scheduler

Namespace for TVM Auto-scheduler.

Classes:

ComputeDAG(compute_or_sche)

The auto-scheduler's computational graph and related program analyses.

LayoutRewriteOption()

Options for applying layout rewrite.

RandomModel()

A model that returns random estimation for all inputs

XGBModel([verbose_eval, num_warmup_sample, ...])

Train a XGBoost model to predict the normalized throughputs of programs.

ApplyHistoryBest(records[, n_lines, ...])

Apply the history best config

ApplyHistoryBestOrSample(records[, ...])

Apply the history best config, or sample a valid schedule if no config is found.

DispatchContext()

Base class of dispatch context.

LocalBuilder([timeout, n_parallel, build_func])

LocalBuilder use local CPU cores to build programs in parallel.

LocalRPCMeasureContext([priority, ...])

A context wrapper for running RPCRunner locally.

LocalRunner([timeout, number, repeat, ...])

LocalRunner that uses local CPU/GPU to measures the time cost of programs.

MeasureInput(task, state)

Store the input of a measurement.

MeasureResult(costs, error_no, error_msg, ...)

Store the results of a measurement.

RPCRunner(key, host, port[, priority, ...])

RPCRunner that uses RPC call to measures the time cost of programs on remote devices.

RecordReader(filename)

Reader of the json log file.

RecordToFile(filename)

A measurement callback that writes measurement records into a file.

EmptyPolicy(task[, init_search_callbacks])

A simple example of the search policy which always returns the initial naive schedule (state).

PreloadCustomSketchRule(meet_condition_func, ...)

A SearchCallback for SketchSearchPolicy that allows users to add custom sketch rule.

PreloadMeasuredStates(filename)

A SearchCallback to load measured states from the log file for a search policy.

SketchPolicy(task[, program_cost_model, ...])

The search policy that searches in a hierarchical search space defined by sketches.

HardwareParams([num_cores, ...])

The parameters of target hardware used to guide the search policy.

SearchTask([func, args, compute_dag, ...])

The computation information and hardware parameters for a schedule search task.

TuningOptions([num_measure_trials, ...])

This controls the options of performance tuning.

TaskScheduler(tasks[, task_weights, ...])

Allocate the time resources when tuning multiple tasks together.

Functions:

get_shape_from_rewritten_layout(...)

Get the orginal shape from a rewritten layout string.

register_task_input_check_func(func_name[, ...])

Register a function that checks the input buffer map.

load_best_record(filename[, workload_key, ...])

Return the best measurement pair form a log file.

load_records(filename)

Load measurement records from a file.

save_records(filename, inputs, results)

Append measure records to file.

extract_tasks(mod, params, target[, ...])

Extract tuning tasks from a relay program.

is_auto_scheduler_enabled()

Return whether the auto-scheduler is enabled.

remove_index_check(tensor)

Remove the safety check in the indexing function for a tensor.

rewrite_compute_body(compute_tensor, new_layout)

Rewrite the body of a ComputeOp according to a new layout of a placeholder

rewrite_tensor_shape(tensor, shape)

Rewrite the tensor shape

auto_schedule(task[, search_policy, ...])

THIS API IS DEPRECATED.

create_task(func, args, target[, ...])

THIS API IS DEPRECATED.

make_workload_key(func, args)

Make a workload key by function and arguments.

register_workload(func_name[, f, override])

Register a function that generates a certain workload.

class tvm.auto_scheduler.ComputeDAG(compute_or_sche)

The auto-scheduler’s computational graph and related program analyses.

We convert a compute declaration described by tvm.compute (could be a single operator or a subgraph) to a ComputeDAG. It keeps the input/output tensors, all operations in the DAG, and some static analysis results for the DAG (e.g. the total float operation count, consumer/producer relations of operations, whether an operation stage should be tiled/compute inlined). These analyses can help the search policy to make decisions during the search. ComputeDAG is also responsible for the interaction between auto-scheduler’s LoopState and TVM schedule (e.g. applying the LoopState transform steps to a TVM schedule, providing LoopState with extra information got from TVM schedule).

Parameters

compute (Union[List[Tensor], str, tvm.te.Schedule]) – Input/output tensors or workload key for a compute declaration.

Methods:

get_init_state()

Get the init state of this ComputeDAG.

apply_steps_from_state(state[, layout_rewrite])

Apply the history transform steps from a State to get a TVM schedule.

print_python_code_from_state(state)

Print transform steps in the history of a State as TVM's python schedule code.

infer_bound_from_state(state)

Infer and fill the bound of all iterators of a state.

rewrite_layout_from_state(state)

Rewrite the layout of the DAG according to the history transform steps of a state.

workload_key()

Return the workload key of this compute DAG.

get_init_state()

Get the init state of this ComputeDAG.

Returns

state – The initial State without any transform steps.

Return type

State

apply_steps_from_state(state, layout_rewrite=0)

Apply the history transform steps from a State to get a TVM schedule.

Parameters
  • state (Union[State, StateObject]) – The state from which we get transform steps.

  • layout_rewrite (LayoutRewriteOption = NoRewrite) – Rewrite the layout of placeholders specified by “layout_free_placeholders” attr to make it most friendly for the generated schedule to read from.

Returns

Return type

A te.schedule and the a list of te.Tensor to be used in tvm.lower or tvm.build.

print_python_code_from_state(state)

Print transform steps in the history of a State as TVM’s python schedule code.

This is used to print transformation steps for debugging. Use apply_steps_from_state if you want to get a schedule for code generation.

Parameters

state (Union[State, StateObject]) – The state from which we get transform steps.

Returns

str – The Python schedule code.

Return type

Str

infer_bound_from_state(state)

Infer and fill the bound of all iterators of a state.

The states may lose complete bound information after some transform steps (e.g., compute_at). We can call this function to infer and fill all the bound information. This function calls TVM InferBound pass internally to get the bound. The returned state of this function is guaranteed to have complete iterator extent information.

Parameters

state (Union[State, StateObject]) – The state from which we get transform steps.

Returns

updated_state – The State with complete bound information.

Return type

State

rewrite_layout_from_state(state)

Rewrite the layout of the DAG according to the history transform steps of a state.

Parameters

state (Union[State, StateObject]) – The state from which we get transform steps.

Returns

updated_dag – The compute dag with rewritten layout.

Return type

ComputeDAG

workload_key()

Return the workload key of this compute DAG. The workload key is a JSON string from a tuple of (hash of DAG, tensor shapes…)

Returns

key – The workload key of this compute DAG

Return type

str

class tvm.auto_scheduler.LayoutRewriteOption

Options for applying layout rewrite.

The NO_REWRITE and INSERT_TRANSFORM_STAGE are expected to be used when tuning a standalone op, and the REWRITE_FOR_PRE_TRANSFORMED is expected to be used when tuning ops inside a network.

Methods:

get_target_default(target[, ...])

Get the default layout rewrite option for the specified target.

static get_target_default(target, in_relay_integration=False)

Get the default layout rewrite option for the specified target. Currently we only enable layout rewrite for cpu / mali backend for now

Parameters
  • target (tvm.target.Target) – The compilation target.

  • in_relay_integration (bool) – If this check is ask for relay integration.

Returns

layout_rewrite_option – The default layout rewrite option for the specified target.

Return type

LayoutRewriteOption

tvm.auto_scheduler.get_shape_from_rewritten_layout(rewritten_layout, axis_names)

Get the orginal shape from a rewritten layout string.

Parameters
  • rewritten_layout (str) – The layout after rewrite

  • axis_names (List[str]) – Specify the order of axes by names

Returns

shape – The original shape

Return type

List[PrimExpr]

class tvm.auto_scheduler.RandomModel

A model that returns random estimation for all inputs

Methods:

update(inputs, results)

Update the cost model according to new measurement results (training data).

predict(search_task, states)

Predict the scores of states

update(inputs, results)

Update the cost model according to new measurement results (training data).

Parameters
predict(search_task, states)

Predict the scores of states

Parameters
  • search_task (SearchTask) – The search task of states

  • states (List[State]) – The input states

Returns

scores – The predicted scores for all states

Return type

List[float]

class tvm.auto_scheduler.XGBModel(verbose_eval=25, num_warmup_sample=100, seed=None, model_file=None, adaptive_training=False)

Train a XGBoost model to predict the normalized throughputs of programs. Let the normalized throughput be the score of a program (higher is better). We predict the (approximate) score of a program = the sum of the scores of all stages in this program. i.e. score(P) = score_s0 + score_s1 + … + score_sn, where score_si is the score of Stage i in Program P. We extract feature for each stage and let the xgboost predict the score for each stage. We then sum up the predictions as the score of the whole program. We use RMSE as the loss function. i.e. loss(P, y) = 1/2 * (score(P) - y)^2, where P is the program and y is the normalized throughput according to the ground truth (measurement). XGBoost does not support this loss function because score(P) is a sum of the prediction of several samples, so we implemented a custom loss function and call it pack-sum-rmse. It is called “pack-sum” because we combine several samples into a “pack” and sum up their predictions.

Parameters
  • verbose_eval (int = 25) – Print training log every verbose_eval iterations.

  • num_warmup_sample (int = 100) – The minimum number of samples to start to use the trained model. If the number of samples is less than this number, the model outputs random predictions.

  • seed (Optional[int]) – The random seed

  • model_file (Optional[str]) – If is not None, save model to this file after every update.

  • adaptive_training (bool = False) – Whether to use adaptive training, which reduces the training frequency when there are too many logs.

Methods:

update(inputs, results)

Update the cost model according to new measurement results (training data).

predict(task, states)

Predict the scores of states :param search_task: The search task of states :type search_task: SearchTask :param statse: The input states :type statse: List[State]

predict_stages(task, states)

Predict the scores of all stages in states.

update_from_file(file_name[, n_lines])

Load measure records from a log file to update the cost model.

save(file_name)

Save the model to a file :param file_name: The filename :type file_name: str

load(file_name)

Load the model from a file :param file_name: The filename :type file_name: str

update(inputs, results)

Update the cost model according to new measurement results (training data). XGBoost does not support incremental training, so we re-train a new model every time. :param inputs: The measurement inputs :type inputs: List[MeasureInput] :param results: The measurement results :type results: List[MeasureResult]

predict(task, states)

Predict the scores of states :param search_task: The search task of states :type search_task: SearchTask :param statse: The input states :type statse: List[State]

Returns

scores – The predicted scores for all states

Return type

List[float]

predict_stages(task, states)

Predict the scores of all stages in states. This is the breakdown version of predict.

Parameters
  • search_task (SearchTask) – The search task of states

  • statse (List[State]) – The input states

Returns

scores – The predicted scores for all stages in all states in the packed format

Return type

List[float]

Note

For faster data copy between c++ and python, the python part returns scores in a single flatten array using a packed format. The c++ part then unpacks the flatten array. The packed format is: {

float scores[N]; // scores[i] is the score for states[i]. int n_stage_0; // the number of stages in states[0] float stage_scores_0[[n_stage_0] // the scores for all stages in states[0] int n_stage_1; // the number of stages in states[1] float stage_scores_1[n_stage_1]; // the scores for all stages in states[1] … int n_stage_i; // the number of stages in states[i] float stage_scores_1[n_stage_i]; // the scores for all stages in states[i] … // untill i == N - 1

} To implement this format, we also store int as float, so we can store all numbers into a single float array.

update_from_file(file_name, n_lines=None)

Load measure records from a log file to update the cost model. This function can be used to pre-train the cost model with history log files. :param file_name: The filename :type file_name: str :param n_lines: Only load first n lines of the log file :type n_lines: Optional[int]

save(file_name: str)

Save the model to a file :param file_name: The filename :type file_name: str

load(file_name: str)

Load the model from a file :param file_name: The filename :type file_name: str

class tvm.auto_scheduler.ApplyHistoryBest(records, n_lines=None, include_compatible=False)

Apply the history best config

Parameters
  • records (str, list of str, or iterator of (auto_scheduler.measure.MeasureInput, auto_scheduler.measure.MeasureResult)) – Collection of tuning records. If is str, then it should be the filename of a records log file. Each row of this file is an encoded record pair. If it is an iterator, it can either be a set of str filenames which will be applied jointly, or a set of (input, result) tuples.

  • n_lines (Optional[int]) – if it is not None, only load the first n_lines lines of log.

  • include_compatible (bool) – When set to True, compatible records will also be considered.

Methods:

get_workload_entry(best_records, target_key, ...)

Get the entry of the target key and workload key hash in the given best record map.

load(records[, n_lines])

Load records to this dispatch context

update(target, workload_key, state)

Update the config for a workload

static get_workload_entry(best_records, target_key, workload_key)

Get the entry of the target key and workload key hash in the given best record map.

Parameters
  • best_records (Dict[str, Dict[str, Dict[str, Any]]]) – The best record map.

  • target_key (str) – The first key to the best_records.

  • workload_key (str) – The workload key that can be decoded to workload hash and args.

Returns

  • entry (Dict[str, Any]) – The entry in best_records with target key and workload hash.

  • workload_hash (str) – The workload hash decoded from workload_key.

  • workload_args (Tuple[Any, …]) – The hashable tuple of workload args decoded from workload_key.

load(records, n_lines=None)

Load records to this dispatch context

Parameters
update(target, workload_key, state)

Update the config for a workload

Parameters
  • target (Target) – The current target

  • workload_key (str) – The current workload_key.

  • state (StateObject) – The state that stores schedule configuration for the workload

class tvm.auto_scheduler.ApplyHistoryBestOrSample(records, sample_simple_workloads=False, cost_model_file=None, num_measure=- 1)

Apply the history best config, or sample a valid schedule if no config is found.

Parameters
  • records (str or iterator of (auto_scheduler.measure.MeasureInput, auto_scheduler.measure.MeasureResult)) – Collection of tuning records. If is str, then it should be the filename of a records log file. Each row of this file is an encoded record pair. Otherwise, it is an iterator.

  • sample_simple_workloads (bool) – When False, sampling will not apply to simple workloads (w/o reduction).

  • cost_model_file (str) – The filename of the pre-trained XGBoost cost model. If not present, then random model will be used.

  • num_measure (int) – Meausre the top-N rank of sampled schedules on the device. The default -1 means no measurement and simply return the top-1 schedule ranked by the cost model.

Methods:

query(target, workload_key, has_complex_op, ...)

Query the context to get the specific config for a workload.

query(target, workload_key, has_complex_op, dag, func_name)

Query the context to get the specific config for a workload. If this function cannot find the result inside this context, it will query the result from the upper contexts.

Parameters
  • target (Target) – The current target

  • workload_key (str) – The workload key

  • has_complex_op (bool) – Whether this workload has at least one complex op.

  • dag (ComputeDAG) – The ComputeDAG of the workload.

  • func_name (str) – The function name of this workload.

Returns

state – The state that stores schedule configuration for the workload

Return type

StateObject

class tvm.auto_scheduler.DispatchContext

Base class of dispatch context.

Methods:

query(target, workload_key, has_complex_op, ...)

Query the context to get the specific config for a workload.

update(target, workload_key, state)

Update the config for a workload

query(target, workload_key, has_complex_op, dag, func_name)

Query the context to get the specific config for a workload. If this function cannot find the result inside this context, it will query the result from the upper contexts.

Parameters
  • target (Target) – The current target

  • workload_key (str) – The workload key

  • has_complex_op (bool) – Whether this workload has at least one complex op.

  • dag (ComputeDAG) – The ComputeDAG of the workload.

  • func_name (str) – The function name of this workload.

Returns

state – The state that stores schedule configuration for the workload

Return type

StateObject

update(target, workload_key, state)

Update the config for a workload

Parameters
  • target (Target) – The current target

  • workload_key (str) – The current workload_key.

  • state (StateObject) – The state that stores schedule configuration for the workload

class tvm.auto_scheduler.LocalBuilder(timeout=15, n_parallel=4, build_func='default')

LocalBuilder use local CPU cores to build programs in parallel.

Parameters
  • timeout (int = 15) – The timeout limit (in second) for each build thread. This is used in a wrapper of the multiprocessing.Process.join().

  • n_parallel (int = multiprocessing.cpu_count()) – Number of threads used to build in parallel.

  • build_func (callable or str = "default") – If is ‘default’, use default build function If is ‘ndk’, use function for android ndk If is callable, use it as custom build function, expect lib_format field.

class tvm.auto_scheduler.LocalRPCMeasureContext(priority=1, n_parallel=1, timeout=10, number=3, repeat=1, min_repeat_ms=0, cooldown_interval=0.0, enable_cpu_cache_flush=False, device=0)

A context wrapper for running RPCRunner locally. This will launch a local RPC Tracker and local RPC Server.

Parameters
  • priority (int = 1) – The priority of this run request, larger is more prior.

  • n_parallel (int = 1) – The number of tasks run in parallel.

  • timeout (int = 10) – The timeout limit (in second) for each run. This is used in a wrapper of the multiprocessing.Process.join().

  • number (int = 3) – The number of times to run the generated code for taking average. We call these runs as one repeat of measurement.

  • repeat (int = 1) – The number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first “1” is warm up and will be discarded. The returned result contains repeat costs, each of which is an average of number costs.

  • min_repeat_ms (int = 0) – The minimum duration of one repeat in milliseconds. By default, one repeat contains number runs. If this parameter is set, the parameters number will be dynamically adjusted to meet the minimum duration requirement of one repeat. i.e., When the run time of one repeat falls below this time, the number parameter will be automatically increased.

  • cooldown_interval (float = 0.0) – The cool down interval between two measurements in seconds.

  • enable_cpu_cache_flush (bool = False) – Whether to flush cache on CPU between repeated measurements. Flushing cache can make the measured latency of one operator closer to its actual latency during end-to-end inference. To make this option effective, the argument number should also be set to 1. This is only has effect on CPU task.

  • device (int = 0) – Which device to run on if multiple are available.

class tvm.auto_scheduler.LocalRunner(timeout=10, number=3, repeat=1, min_repeat_ms=100, cooldown_interval=0.0, enable_cpu_cache_flush=False, device=0)

LocalRunner that uses local CPU/GPU to measures the time cost of programs.

Parameters
  • timeout (int = 10) – The timeout limit (in second) for each run. This is used in a wrapper of the multiprocessing.Process.join().

  • number (int = 3) – The number of times to run the generated code for taking average. We call these runs as one repeat of measurement.

  • repeat (int = 1) – The number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first “1” is warm up and will be discarded. The returned result contains repeat costs, each of which is an average of number costs.

  • min_repeat_ms (int = 100) – The minimum duration of one repeat in milliseconds. By default, one repeat contains number runs. If this parameter is set, the parameters number will be dynamically adjusted to meet the minimum duration requirement of one repeat. i.e., When the run time of one repeat falls below this time, the number parameter will be automatically increased.

  • cooldown_interval (float = 0.0) – The cool down interval between two measurements in seconds.

  • enable_cpu_cache_flush (bool = False) – Whether to flush cache on CPU between repeated measurements. Flushing cache can make the measured latency of one operator closer to its actual latency during end-to-end inference. To make this option effective, the argument number should also be set to 1. This is only has effect on CPU task.

  • device (int = 0) – Which device to run on if multiple are available.

class tvm.auto_scheduler.MeasureInput(task, state)

Store the input of a measurement.

Parameters
  • task (SearchTask) – The SearchTask of this measurement.

  • state (Union[State, StateObject]) – The State to be measured.

Methods:

serialize()

Custom serialization to workaround MeasureInput not exposing all its members to the TVM ffi interface.

serialize()

Custom serialization to workaround MeasureInput not exposing all its members to the TVM ffi interface.

Note that we do not implement __getstate__ as it does not seem to work with initialization of the workload registry (maybe because of initialization order?).

class tvm.auto_scheduler.MeasureResult(costs, error_no, error_msg, all_cost, timestamp)

Store the results of a measurement.

Parameters
  • costs (List[float]) – The time costs of execution.

  • error_no (int) – The error code.

  • error_msg (Optional[str]) – The error message if there is any error.

  • all_cost (float) – The time cost of build and run.

  • timestamp (float) – The time stamps of this measurement.

class tvm.auto_scheduler.RPCRunner(key, host, port, priority=1, n_parallel=1, timeout=10, number=3, repeat=1, min_repeat_ms=100, cooldown_interval=0.0, enable_cpu_cache_flush=False, device=0)

RPCRunner that uses RPC call to measures the time cost of programs on remote devices. Or sometime we may need to use RPC even in local running to insulate the thread environment. (e.g. running CUDA programs)

Parameters
  • key (str) – The key of the device registered in the RPC tracker.

  • host (str) – The host address of the RPC Tracker.

  • port (int) – The port of RPC Tracker.

  • priority (int = 1) – The priority of this run request, larger is more prior.

  • n_parallel (int = 1) – The number of tasks run in parallel.

  • timeout (int = 10) – The timeout limit (in second) for each run. This is used in a wrapper of the multiprocessing.Process.join().

  • number (int = 3) – The number of times to run the generated code for taking average. We call these runs as one repeat of measurement.

  • repeat (int = 1) – The number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first “1” is warm up and will be discarded. The returned result contains repeat costs, each of which is an average of number costs.

  • min_repeat_ms (int = 100) – The minimum duration of one repeat in milliseconds. By default, one repeat contains number runs. If this parameter is set, the parameters number will be dynamically adjusted to meet the minimum duration requirement of one repeat. i.e., When the run time of one repeat falls below this time, the number parameter will be automatically increased.

  • cooldown_interval (float = 0.0) – The cool down interval between two measurements in seconds.

  • enable_cpu_cache_flush (bool = False) – Whether to flush cache on CPU between repeated measurements. Flushing cache can make the measured latency of one operator closer to its actual latency during end-to-end inference. To make this option effective, the argument number should also be set to 1. This is only has effect on CPU task.

  • device (int = 0) – Which device to run on if multiple are available.

tvm.auto_scheduler.register_task_input_check_func(func_name, f=None, override=False)

Register a function that checks the input buffer map.

The input function should take a list of Tensor wich indicate the Input/output Tensor of a TVM subgraph and return a Map from the input Tensor to its buffer name.

Parameters
  • func_name (Union[Function, str]) – The check function that returns the compute declaration Tensors or its function name.

  • f (Optional[Function]) – The check function to be registered.

  • override (boolean = False) – Whether to override existing entry.

Examples

@auto_scheduler.register_task_input_check_func
def check_task_input_by_placeholder_name(args : List[Tensor]):
    tensor_input_map = {}
    for arg in args:
        if isinstance(arg.op, tvm.te.PlaceholderOp):
            if arg.op.name != "placeholder":
                tensor_input_map[arg] = arg.op.name
    return tensor_input_map
class tvm.auto_scheduler.RecordReader(filename)

Reader of the json log file.

Parameters

filename (str) – File name for this reader to load log from.

Methods:

check_workload_key(inputs)

Check and throw warnings for records with old format workload key.

read_lines([max_lines, skip_lines])

Read multiple lines from the log file.

check_workload_key(inputs)

Check and throw warnings for records with old format workload key.

Parameters

inputs (List[MeasureInput]) – The measure inputs to be checked.

Notes

This checker could be deprecated in the future.

read_lines(max_lines=None, skip_lines=0)

Read multiple lines from the log file.

Parameters
  • max_lines (Optional[int]) – The maximum number of lines. None to read all lines.

  • skip_lines (int = 0) – Skip the first n lines.

Returns

  • inputs (List[auto_scheduler.measure.MeasureInput]) – The MeasureInputs loaded from the log file.

  • results (List[auto_scheduler.measure.MeasureResult]) – The MeasureResults loaded from the log file.

Notes

Some unimportant and expensive fields in the returned MeasureInput are not deserialized for faster read speed (e.g. input.task.compute_dag, input.state.stages). If you want to use them, you can call the recover_measure_input below to rebuild these fields.

class tvm.auto_scheduler.RecordToFile(filename)

A measurement callback that writes measurement records into a file.

Parameters

filename (str) – File name for this callback to write log to.

tvm.auto_scheduler.load_best_record(filename, workload_key=None, target=None, include_compatible=False)

Return the best measurement pair form a log file. This may return none results if there is no legal measure pair with the specified workload_key/target found from the log file.

Parameters
  • filename (str) – File name to load log from.

  • workload_key (Optional[str]) – The workload key of the compute declaration. With None, this returns the best measure pair of all workloads.

  • target (Optional[tvm.target.Target]) – The target device. With None, this returns the best measure pair of all target devices.

  • include_compatible (bool) – When set to True, all compatible records in the log file will be considered.

Returns

  • input (auto_scheduler.measure.MeasureInput) – The best State’s MeasureInput from this log fine.

  • result (auto_scheduler.measure.MeasureResult) – The best State’s MeasureResult from this log fine.

tvm.auto_scheduler.load_records(filename)

Load measurement records from a file.

Parameters

filename (str) – File name to load log from.

Returns

logs

Return type

List[auto_scheduler.measure.MeasureInput, auto_scheduler.measure.MeasureResult]

Notes

Some unimportant and expensive fields in the returned MeasureInput are not deserialized for faster read speed (e.g., input.task.compute_dag, input.state.stages). If you want to use them, you can call the recover_measure_input below to rebuild these fields.

tvm.auto_scheduler.save_records(filename, inputs, results)

Append measure records to file.

Parameters
  • filename (str) – File name to write log to.

  • inputs (List[MeasureInputs]) – The MeasureInputs to be written.

  • results (List[MeasureResults]) – The MeasureResults to be written.

tvm.auto_scheduler.extract_tasks(mod, params, target, target_host=None, hardware_params=None, include_simple_tasks=False, dump_workload_to_dag_log=None, opt_level=3, other_targets=None)

Extract tuning tasks from a relay program.

Parameters
  • mod (tvm.IRModule or relay.function.Function) – The module or function to tune

  • params (dict of str to numpy array) – The associated parameters of the program

  • target (Union[tvm.target.Target, str]) – The compilation target

  • target_host (Optional[Union[tvm.target.Target, str]]) – The host compilation target

  • hardware_params (Optional[HardwareParams]) – Hardware parameters used for the search tasks

  • include_simple_tasks (bool) – Whether to extract simple tasks that do not include complicated ops.

  • dump_workload_to_dag_log (Optional[str]) – A file to dump an association between the workload keys and the actual DAG

  • opt_level (Optional[int]) – The optimization level of the task extractions.

  • other_targets (Optional[List[tvm.target.Target]]) – Other targets for call_all_topi_funcs, e.g., cutlass target.

Returns

  • tasks (List[SearchTask]) – The tasks in this network

  • weights (List[int]) – The weight (i.e. the number of appearance) of extracted tasks

tvm.auto_scheduler.is_auto_scheduler_enabled()

Return whether the auto-scheduler is enabled.

Parameters

enabled (bool) – Whether the auto-scheduler is enabled

tvm.auto_scheduler.remove_index_check(tensor)

Remove the safety check in the indexing function for a tensor. This is done by monkey patching its indexing function. After removing the check, we are allowed to create a temporary wrong IR and fix it later in other places.

Parameters

tensor (Tensor) – The tensor to remove index check.

tvm.auto_scheduler.rewrite_compute_body(compute_tensor, new_layout)

Rewrite the body of a ComputeOp according to a new layout of a placeholder

tvm.auto_scheduler.rewrite_tensor_shape(tensor, shape)

Rewrite the tensor shape

class tvm.auto_scheduler.EmptyPolicy(task, init_search_callbacks=None)

A simple example of the search policy which always returns the initial naive schedule (state).

Parameters
  • task (SearchTask) – The SearchTask for the computation declaration.

  • init_search_callbacks (Optional[List[SearchCallback]]) – Callback functions called before the search process.

class tvm.auto_scheduler.PreloadCustomSketchRule(meet_condition_func, apply_func, rule_name='CustomSketchRule')

A SearchCallback for SketchSearchPolicy that allows users to add custom sketch rule.

Notes

This is an advanced feature. Make sure you’re clear how it works and this should only be used in SketchSearchPolicy.

Parameters
  • meet_condition_func (Callable) – A function with (policy, state, stage_id) -> int. Should return one of the result enumeration.

  • apply_func (Callable) – A function with (policy, state, stage_id) -> [[State, int], …].

  • rule_name (str = "CustomSketchRule") – The name of this custom sketch rule.

class tvm.auto_scheduler.PreloadMeasuredStates(filename)

A SearchCallback to load measured states from the log file for a search policy.

This can resume the state of the search policy:
  • Making sure an already measured state in former searches will never be measured again.

  • The history states can be used to speed up the search process(e.g. SketchPolicy uses history states as starting point to perform Evolutionary Search).

Parameters

filename (str) – The name of the record file.

class tvm.auto_scheduler.SketchPolicy(task, program_cost_model=auto_scheduler.RandomModel(0x2a5ace8), params=None, seed=None, verbose=1, init_search_callbacks=None)

The search policy that searches in a hierarchical search space defined by sketches. The policy randomly samples programs from the space defined by sketches and use evolutionary search to fine-tune them.

Parameters
  • task (SearchTask) – The SearchTask for the computation declaration.

  • program_cost_model (CostModel = RandomModel()) – The cost model to estimate the complete schedules.

  • params (Optional[Dict[str, Any]]) – Parameters of the search policy. See src/auto_scheduler/search_policy/sketch_search_policy.h for the definitions. See DEFAULT_PARAMS below to find the default values.

  • seed (Optional[int]) – Random seed.

  • verbose (int = 1) – Verbosity level. 0 for silent, 1 to output information during schedule search.

  • init_search_callbacks (Optional[List[SearchCallback]]) –

    Callback functions called before the search process, usually used to do extra initializations. Possible callbacks:

    • auto_scheduler.PreloadMeasuredStates

    • auto_scheduler.PreloadCustomSketchRule

Methods:

generate_sketches([print_for_debug])

Generate the sketches.

sample_initial_population()

Sample initial population.

evolutionary_search(init_populations, out_size)

Perform evolutionary search.

generate_sketches(print_for_debug=False)

Generate the sketches. This python interface is mainly used for debugging and testing. The actual search is all done in c++.

Parameters

print_for_debug (bool = False) – Whether print out the sketches for debug.

Returns

sketches – The generated sketches of this search task.

Return type

List[State]

sample_initial_population()

Sample initial population. This python interface is mainly used for debugging and testing. The actual search is all done in c++.

Returns

states – The sampled states

Return type

List[State]

Perform evolutionary search. This python interface is mainly used for debugging and testing. The actual search is all done in c++.

Parameters
  • init_populations (List[State]) – The initial population states

  • out_size (int) – The size of generated states

Returns

states – The generated states

Return type

List[State]

class tvm.auto_scheduler.HardwareParams(num_cores=None, vector_unit_bytes=None, cache_line_bytes=None, max_shared_memory_per_block=None, max_local_memory_per_block=None, max_threads_per_block=None, max_vthread_extent=None, warp_size=None, target=None, target_host=None)

The parameters of target hardware used to guide the search policy.

When a parameter isn’t provided, it will instead use the current machine’s default value if target is specified. TODO(jcf94): This is considered to be merged with the new Target specification: https://discuss.tvm.apache.org/t/rfc-tvm-target-specification/6844 :param num_cores: The number of device cores. :type num_cores: int, optional :param vector_unit_bytes: The width of vector units in bytes. :type vector_unit_bytes: int, optional :param cache_line_bytes: The size of cache line in bytes. :type cache_line_bytes: int, optional :param max_shared_memory_per_block: The max shared memory per block in bytes. :type max_shared_memory_per_block: int, optional :param max_local_memory_per_block: The max local memory per block in bytes. :type max_local_memory_per_block: int, optional :param max_threads_per_block: The max number of threads per block. :type max_threads_per_block: int, optional :param max_vthread_extent: The max vthread extent. :type max_vthread_extent: int, optional :param warp_size: The thread numbers of a warp. :type warp_size: int, optional :param target: The compilation target. Used to determine default values if provided. :type target: str or Target, optional :param target_host: The compilation target host. Used to determine default values if provided. :type target_host: str or Target, optional

class tvm.auto_scheduler.SearchTask(func=None, args=None, compute_dag=None, workload_key=None, target=None, target_host=None, hardware_params=None, layout_rewrite_option=None, task_inputs=None, task_inputs_overwrite=False, task_inputs_save_to_file=False, desc='')

The computation information and hardware parameters for a schedule search task.

Parameters
  • func (Union[Function, str]) – The function that returns the compute declaration Tensors. Can be the a function or the function name.

  • args (Union[Tuple[Any, ...], List[Any]]) – The args of the function.

  • compute_dag (ComputeDAG) – The ComputeDAG for the corresponding compute declaration.

  • workload_key (str) – The workload key for the corresponding compute declaration.

  • target (any target-like object, see Target.canon_target) – The target device of this search task.

  • target_host (None or any target-like object, see Target.canon_target) – The target host device of this search task.

  • hardware_params (Optional[HardwareParams]) – Hardware parameters used in this search task.

  • layout_rewrite_option (Optional[LayoutRewriteOption]) – The layout rewrite option used for measuring programs. If None, the default value will be set depending on the specified target. Auto_scheduler will find a better schedule for the specified layout rewrite option. The NO_REWRITE and INSERT_TRANSFORM_STAGE are expected to be used when tuning a standalone op, and the REWRITE_FOR_PRE_TRANSFORMED is expected to be used when tuning ops inside a network.

  • task_inputs (Union[Dict[str, tvm.nd.NDArray], List[str]]) – A dict maps the input names to input tensors or a list of input names. Some special Tensor used as inputs in program measuring. Usually we do not need to care about it, but for special workloads like Sparse computation the Sparse Tensor input are meaningful that we cannot use random input directly.

  • task_inputs_overwrite (bool = False) – Whether to overwrite the data if a name has already in the global table.

  • task_inputs_save_to_file (bool = False) – Whether to save the data to a local file as well. This can be reused to resume the last tuning process.

  • desc (str = "") – The description string of this task.

Examples

# We support two ways to create a search task

# Way 1: create a task by a workload generation function.
# The `workload_func` is a function decorated by @auto_scheduler.register_workload
task = SearchTask(func=workload_func, args=args, target=target)

# Way 2: create a task by a workload_key.
# The `workload_key` is a string, which can be either a hash key or a json-serialized
# tuple(func, args).
task = SearchTask(workload_key=workload_key, target=target)

Methods:

tune(tuning_options[, search_policy, ...])

Run auto scheduling search for a task

apply_best(log_file[, include_compatible, ...])

Apply the history best from a log file and return the schedule.

print_best(log_file[, print_mode])

Print the best schedule as python schedule API code or CUDA source code.

tune(tuning_options, search_policy=None, adaptive_training=False)

Run auto scheduling search for a task

Parameters
  • tuning_options (TuningOptions) – Tuning and measurement options.

  • search_policy (Optional[SearchPolicy]) – The search policy to be used for schedule search.

apply_best(log_file, include_compatible=False, layout_rewrite_option=None)

Apply the history best from a log file and return the schedule.

Parameters
  • log_file (str) – The name of the log file.

  • include_compatible (bool) – When set to True, all compatible records in the log file will be considered.

  • layout_rewrite_option (Optional[LayoutRewriteOption]) – The layout rewrite option.

Returns

Return type

A te.Schedule and the a list of te.Tensor to be used in tvm.lower or tvm.build.

print_best(log_file, print_mode='schedule')

Print the best schedule as python schedule API code or CUDA source code.

Parameters
  • log_file (str) – The name of the log file

  • print_mode (str) – if “schedule”, print the best schedule as python schedule API code. if “cuda”, print the best schedule as CUDA source code.

Returns

code – The best schedule code in python API or CUDA source code

Return type

str

class tvm.auto_scheduler.TuningOptions(num_measure_trials=0, early_stopping=None, num_measures_per_round=64, verbose=1, builder='local', runner='local', measure_callbacks=None)

This controls the options of performance tuning.

Parameters
  • num_measure_trials (int = 0) – The number of measurement trials. The search policy measures num_measure_trials schedules in total and returns the best one among them. With num_measure_trials == 0, the policy will do the schedule search but won’t involve measurement. This can be used to get a runnable schedule quickly without auto-tuning.

  • early_stopping (Optional[int]) – Stop the tuning early if getting no improvement after n measurements.

  • num_measures_per_round (int = 64) – The number of schedules to be measured at each search round. The whole schedule search process will try a total number of num_measure_trials in several rounds.

  • verbose (int = 1) – Verbosity level. 0 for silent, 1 to output information during schedule search.

  • builder (Union[ProgramBuilder, str] = 'local') – ProgramBuilder which builds the program.

  • runner (Union[ProgramRunner, str] = 'local') – ProgramRunner which runs the program and measures time costs.

  • measure_callbacks (Optional[List[MeasureCallback]]) – Callback functions called after each measurement. Candidates: - auto_scheduler.RecordToFile

tvm.auto_scheduler.auto_schedule(task, search_policy=None, tuning_options=auto_scheduler.TuningOptions(0x23e1f90))

THIS API IS DEPRECATED.

Run auto scheduling search for a task.

Parameters
  • task (SearchTask) – The SearchTask for the computation declaration.

  • search_policy (Optional[SearchPolicy]) – The search policy to be used for schedule search.

  • tuning_options (Optional[TuningOptions]) – Tuning and measurement options.

Returns

Return type

A te.Schedule and the a list of te.Tensor to be used in tvm.lower or tvm.build.

tvm.auto_scheduler.create_task(func, args, target, target_host=None, hardware_params=None)

THIS API IS DEPRECATED.

Create a search task.

Parameters
  • func (Union[Function, str]) – The function that returns the compute declaration Tensors. Can be the a function or the function name.

  • args (Union[Tuple[Any, ...], List[Any]]) – The args of the function.

  • target (Union[tvm.target.Target, str]) – The target device of this search task.

  • target_host (Optional[Union[tvm.target.Target, str]]) – The target host device of this search task.

  • hardware_params (Optional[HardwareParams]) – Hardware parameters used in this search task.

Returns

SearchTask

Return type

the created task

class tvm.auto_scheduler.TaskScheduler(tasks, task_weights=None, objective_func=None, strategy='gradient', load_model_file: Optional[str] = None, load_log_file: Optional[str] = None, alpha: float = 0.2, beta: float = 2, gamma: float = 0.5, backward_window_size: int = 3, callbacks=None)

Allocate the time resources when tuning multiple tasks together. This implements two strategies: “round-robin” and “gradient”.

Parameters
  • tasks (List[SearchTask]) – All tasks to tune

  • task_weights (Optional[List[float]]) – The weights of tasks. If provided, the task scheduler will set the objective function to sum(weight[t] * latency[t]), where weight[t] is the weight of a task and the lantecy[t] is the lantecy of the task. If not provided, the task scheduer will assign equal weights to all tasks (i.e., the objective function is sum(latency[t])).

  • objective_func (Optional[Callable[List[float] -> float]]) – The objective function to be minimized. The objective function accepts the current latencies of all tasks and returns the objective. If not provided, the objective is the weighted sum of the latencies of all tasks.

  • strategy (str = "gradient") – The scheduling strategy. “round-robin”: Tune tasks in round robin order. “gradient” : Tune tasks with gradient descent.

  • load_model_file (Optional[str]) – Load pre-trained model from this file. If this is None, the cost model will be trained from scratch.

  • load_log_file (Optional[str]) – Load measurement records from this file. If it is not None, the status of the task scheduler, search policies and cost models will be restored according to this file.

  • verbose (int = 1) – The level of verbosity. 0 means silent.

  • alpha (float = 0.2) – The parameter used for ‘gradient’ strategy

  • beta (float = 2) – The parameter used for ‘gradient’ strategy

  • backward_window_size (int = 3) – The parameter used for ‘gradient’ strategy

  • callbacks (Optional[List[TaskSchedulerCallback]]) – The task scheduler callbacks that will be called before and after tuning a task. If None, PrintTableInfo and LogEstimatedLatency callback will be used.

Methods:

tune(tune_option[, search_policy, ...])

Tune a batch of tasks together.

tune(tune_option, search_policy='default', search_policy_params=None, adaptive_training=False, per_task_early_stopping=None)

Tune a batch of tasks together.

Parameters
  • tune_option (TuningOptions) – The tuning options applied to all tasks.

  • search_policy (: Union[str, List[SearchPolicy]] = "default") – The list of search policies. If it is str, “default” for the default policy (SketchPolicy + XGBModel), “sketch.xgb” for SketchPolicy + XGBModel, “sketch.random” for SketchPolicy + RandomModel.

  • search_policy_params (Optional[Dict[str, Any]]) – The parameters of the search policy

  • adaptive_training (bool = False) – Option used by XGBModel to reduce the model training frequency when there’re too many logs.

  • per_task_early_stopping (Optional[int]) – Stop tuning a task early if getting no improvement after n measurements.

tvm.auto_scheduler.make_workload_key(func, args)

Make a workload key by function and arguments.

Parameters
  • func (Union[Function, str]) – The function that returns the compute declaration Tensors. Can be the a function or the function name.

  • args (Args) – The args of the function.

Returns

workload_key – The workload key of the function.

Return type

str

tvm.auto_scheduler.register_workload(func_name, f=None, override=False)

Register a function that generates a certain workload.

The input function should take hashable and jsonable arguments (int, float, tuple of int, tvm.tensor.Tensor, …) and return a list of tvm.tensor.Tensor.

Parameters
  • func_name (Union[Function, str]) – The generation function that returns the compute declaration Tensors or its function name.

  • f (Optional[Function]) – The generation function to be registered.

  • override (boolean = False) – Whether to override existing entry.

Examples

@auto_scheduler.register_workload
def matmul(N, M, K):
    A = te.placeholder((N, K), name='A')
    B = te.placeholder((K, M), name='B')
    k = te.reduce_axis((0, K), name='k')
    C = te.compute((N, M), lambda i, j: te.sum(A[i][k] * B[k][j], axis=[k]), name='C')
    return [A, B, C]