24 #ifndef TVM_RELAY_ATTRS_NN_H_ 25 #define TVM_RELAY_ATTRS_NN_H_ 46 TVM_ATTR_FIELD(axis).describe(
"The axis to add the bias").set_default(1);
68 .describe(
"Specifies the stride of the convolution.");
72 "If padding is non-zero, then the input is implicitly zero-padded" 73 "on both sides for padding number of points");
78 .describe(
"Specifies the dilation rate to use for dilated convolution.");
80 "Currently unused but may be added in the future.");
83 "The number of output channels in the convolution." 84 " If it is not set, inferred by shape of the weight.")
85 .set_default(NullValue<IndexExpr>());
87 .describe(
"Specifies the dimensions of the convolution window.")
92 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc." 93 "'N', 'C', 'W' stands for batch, channel, and width" 94 "dimensions respectively. Convolution is applied on the 'W'" 99 "Dimension ordering of weight. Can be 'OIW', or 'WIO', etc." 100 "'O', 'I', 'W' stands for num_filter, input_channel, and width" 101 "dimensions respectively.");
106 .describe(
"Output data type, set to explicit type under mixed precision setting");
127 .describe(
"Specifies the strides of the convolution.");
131 "If padding is non-zero, then the input is implicitly zero-padded" 132 "Padding support both symmetric and asymmetric as" 133 "one int : same padding used on all sides" 134 "two int : bottom, right will use same padding as top, left" 135 "four int : padding width in the order of (top, left, bottom, right)");
138 .describe(
"Specifies the dilation rate to use for dilated convolution.");
140 "Controls the connections between inputs and outputs." 141 "At groups=1, all inputs are convolved to all outputs." 142 "At groups=2, the operation becomes equivalent to having two convolution" 143 "layers side by side, each seeing half the input channels, and producing" 144 "half the output channels, and both subsequently concatenated.");
147 "The number of output channels in the convolution." 148 " If it is not set, inferred by shape of the weight.")
149 .set_default(NullValue<IndexExpr>());
151 .describe(
"Specifies the dimensions of the convolution window.")
156 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 157 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 158 "dimensions respectively. Convolution is applied on the 'H' and" 163 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." 164 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 165 "dimensions respectively.");
169 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 170 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 171 "dimensions respectively. Default to be same as input layout.");
176 .describe(
"Output data type, set to explicit type under mixed precision setting");
185 "relay.attrs.ConvWinogradWeightTransformAttrs") {
187 "Tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
197 TVM_ATTR_FIELD(tile_rows).describe(
"Tile rows of the weight transformation for ConvGemm.");
198 TVM_ATTR_FIELD(tile_cols).describe(
"Tile columns of the weight transformation for ConvGemm.");
219 "The tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
222 .describe(
"Specifies the strides of the convolution.");
226 "If padding is non-zero, then the input is implicitly zero-padded" 227 "Padding support both symmetric and asymmetric as" 228 "one int : same padding used on all sides" 229 "two int : bottom, right will use same padding as top, left" 230 "four int : padding width in the order of (top, left, bottom, right)");
233 .describe(
"Specifies the dilation rate to use for dilated convolution.");
235 "Controls the connections between inputs and outputs." 236 "At groups=1, all inputs are convolved to all outputs." 237 "At groups=2, the operation becomes equivalent to having two convolution" 238 "layers side by side, each seeing half the input channels, and producing" 239 "half the output channels, and both subsequently concatenated.");
242 "The number of output channels in the convolution." 243 " If it is not set, inferred by shape of the weight.")
244 .set_default(NullValue<IndexExpr>());
246 .describe(
"Specifies the dimensions of the convolution window.")
251 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 252 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 253 "dimensions respectively. Convolution is applied on the 'H' and" 258 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." 259 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 260 "dimensions respectively.");
264 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 265 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 266 "dimensions respectively. Default to be same as input layout.");
271 .describe(
"Output data type, set to explicit type under mixed precision setting");
277 :
public tvm::AttrsNode<Conv2DWinogradNNPACKWeightTransformAttrs> {
282 "relay.attrs.Conv2DWinogradNNPACKWeightTransformAttrs") {
285 "The convolution algorithm for Winograd NNPACK. " 286 "E.g. tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8 for WT_8x8, " 287 "tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8_FP16 for WT_8x8_FP16");
290 .describe(
"Output data type, set to explicit type under mixed precision setting");
311 .describe(
"Specifies the strides of the convolution.");
315 "If padding is non-zero, then the input is implicitly zero-padded" 316 "Padding support both symmetric and asymmetric as" 317 "one int : same padding used on all sides" 318 "three int : back, bottom, right will use same padding as front, top, left" 319 "six int : padding width in the order of (front, top, left, back, bottom," 323 .describe(
"Specifies the dilation rate to use for dilated convolution.");
325 "Controls the connections between inputs and outputs." 326 "At groups=1, all inputs are convolved to all outputs." 327 "At groups=2, the operation becomes equivalent to having two convolution" 328 "layers side by side, each seeing half the input channels, and producing" 329 "half the output channels, and both subsequently concatenated.");
332 "The number of output channels in the convolution." 333 " If it is not set, inferred by shape of the weight.")
334 .set_default(NullValue<IndexExpr>());
336 .describe(
"Specifies the dimensions of the convolution window.")
339 .set_default(
"NCDHW")
341 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 342 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 343 "dimensions respectively. Convolution is applied on the 'D', 'H' and" 346 .set_default(
"OIDHW")
348 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc." 349 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height," 350 "and width dimensions respectively.");
354 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc." 355 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 356 "dimensions respectively. Default to be same as input layout.");
361 .describe(
"Output data type, set to explicit type under mixed precision setting");
381 .set_default(NullValue<IndexExpr>())
383 "The dimensionality of the output space" 384 "i.e. the number of output channels in the convolution.");
386 .describe(
"The dimensions of the convolution window.")
390 .describe(
"The strides of the convolution.");
394 "Zero-padding added to one side of the output." 395 "Padding support both symmetric and asymmetric as" 396 "one int : same padding used on all sides" 397 "three int : front, bottom, right will use same padding as back, top, left" 398 "six int : padding width in the order of (front, top, left, back, bottom, right)");
402 "If padding is non-zero, then the input is implicitly zero-padded" 403 "Padding support both symmetric and asymmetric as" 404 "one int : same padding used on all sides" 405 "three int : front, bottom, right will use same padding as back, top, left" 406 "six int : padding width in the order of (front, top, left, back, bottom, right)");
409 .describe(
"Specifies the dilation rate to use for dilated convolution.");
411 "Controls the connections between inputs and outputs." 412 "At groups=1, all inputs are convolved to all outputs." 413 "At groups=2, the operation becomes equivalent to having two convolution" 414 "layers side by side, each seeing half the input channels, and producing" 415 "half the output channels, and both subsequently concatenated.");
417 .set_default(
"NCDHW")
419 "Dimension ordering of data. Can be 'NCDHW', 'NDHWC', etc." 420 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 421 "dimensions respectively. Convolution is applied on the 'D', 'H' and" 424 .set_default(
"OIDHW")
426 "Dimension ordering of data and weight. Can be 'OIDHW', 'OIDHW16o16i', etc." 427 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height, and width" 428 "dimensions respectively.");
432 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc." 433 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 434 "dimensions respectively. Default to be same as input layout.");
437 .describe(
"Output data type, set to explicit type under mixed precision setting");
457 "The tile size of winograd. E.g. 2 for F(2x2x2, 3x3x3) and 4 for F(4x4x4, 3x3x3)");
460 .describe(
"Specifies the strides of the convolution.");
464 "If padding is non-zero, then the input is implicitly zero-padded" 465 "Padding support both symmetric and asymmetric as" 466 "one int : same padding used on all sides" 467 "three int : back, bottom, right will use same padding as front, top, left" 468 "six int : padding width in the order of (front, top, left, back, bottom," 472 .describe(
"Specifies the dilation rate to use for dilated convolution.");
474 "Controls the connections between inputs and outputs." 475 "At groups=1, all inputs are convolved to all outputs." 476 "At groups=2, the operation becomes equivalent to having two convolution" 477 "layers side by side, each seeing half the input channels, and producing" 478 "half the output channels, and both subsequently concatenated.");
481 "The number of output channels in the convolution." 482 " If it is not set, inferred by shape of the weight.")
483 .set_default(NullValue<IndexExpr>());
485 .describe(
"Specifies the dimensions of the convolution window.")
488 .set_default(
"NCDHW")
490 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 491 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 492 "dimensions respectively. Convolution is applied on the 'D', 'H' and" 495 .set_default(
"OIDHW")
497 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc." 498 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height," 499 "and width dimensions respectively.");
503 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc." 504 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 505 "dimensions respectively. Default to be same as input layout.");
510 .describe(
"Output data type, set to explicit type under mixed precision setting");
519 TVM_ATTR_FIELD(axis).set_default(-1).describe(
"The axis to sum over when computing softmax.");
539 .set_default(NullValue<IndexExpr>())
541 "The dimensionality of the output space" 542 "i.e. the number of output channels in the convolution.");
544 .describe(
"The dimensions of the convolution window.")
548 .describe(
"The strides of the convolution.");
552 "Zero-padding added to one side of the output." 553 "Padding support both symmetric and asymmetric as" 554 "one int : same padding used on all sides" 555 "two int : bottom, right will use same padding as top, left" 556 "four int : padding width in the order of (top, left, bottom, right)");
560 "If padding is non-zero, then the input is implicitly zero-padded" 561 "Padding support both symmetric and asymmetric as" 562 "one int : same padding used on all sides" 563 "two int : bottom, right will use same padding as top, left" 564 "four int : padding width in the order of (top, left, bottom, right)");
567 .describe(
"Specifies the dilation rate to use for dilated convolution.");
569 "Controls the connections between inputs and outputs." 570 "At groups=1, all inputs are convolved to all outputs." 571 "At groups=2, the operation becomes equivalent to having two convolution" 572 "layers side by side, each seeing half the input channels, and producing" 573 "half the output channels, and both subsequently concatenated.");
577 "Dimension ordering of data. Can be 'NCHW', 'NHWC', etc." 578 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 579 "dimensions respectively. Convolution is applied on the 'H' and" 584 "Dimension ordering of data and weight. Can be 'OIHW', 'OIHW16o16i', etc." 585 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 586 "dimensions respectively.");
590 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 591 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 592 "dimensions respectively. Default to be same as input layout.");
595 .describe(
"Output data type, set to explicit type under mixed precision setting");
607 .describe(
"Dilation stride on each dimension, 1 means no dilation.");
608 TVM_ATTR_FIELD(dilation_value).set_default(0.0).describe(
"Value used to dilate the input.");
628 .set_default(NullValue<IndexExpr>())
630 "The dimensionality of the output space" 631 "i.e. the number of output channels in the convolution.");
633 .describe(
"The dimensions of the convolution window.")
637 .describe(
"The strides of the convolution.");
640 .describe(
"Zero-padding added to one side of the output.");
644 "Symmetric or asymmetric padding." 645 "Single value: the input is implicitly zero-padded on both sides." 646 "Two values: padding[0] is used for left input padding, " 647 "padding[1] is used for right input padding,");
650 .describe(
"Specifies the dilation rate to use for dilated convolution.");
652 "Controls the connections between inputs and outputs." 653 "At groups=1, all inputs are convolved to all outputs." 654 "At groups=2, the operation becomes equivalent to having two convolution" 655 "layers side by side, each seeing half the input channels, and producing" 656 "half the output channels, and both subsequently concatenated.");
660 "Dimension ordering of data. Can be 'NCW', 'NWC', etc." 661 "'N', 'C', 'W' stands for batch, channel, and width" 662 "dimensions respectively. Convolution is applied on the" 667 "Dimension ordering of data and weight. Can be 'OIW', 'OIW16o16i', etc." 668 "'O', 'I', 'W' stands for num_filter, input_channel, and width" 669 "dimensions respectively.");
673 "Dimension ordering of output. Can be 'NCW', 'NWC', etc." 674 "'N', 'C', 'W' stands for batch, channel, and width" 675 "dimensions respectively. Default to be same as input layout.");
678 .describe(
"Output data type, set to explicit type under mixed precision setting");
693 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
696 .describe(
"Specifies the strides of the convolution.");
699 .describe(
"Specifies the dilation of the convolution.");
703 "If padding is non-zero, then the input is implicitly zero-padded" 704 "Padding support both symmetric and asymmetric as" 705 "one int : same padding used on all sides" 706 "two int : bottom, right will use same padding as top, left" 707 "four int : padding width in the order of (top, left, bottom, right)");
709 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 710 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 711 "dimensions respectively. Pooling is applied on the 'H' and" 716 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 717 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 718 "dimensions respectively. Pooling is applied on the 'H' and" 721 "When true, will use ceil instead of floor to compute the output shape.");
737 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
740 .describe(
"Specifies the strides of the convolution.");
743 .describe(
"Specifies the dilation of the convolution.");
747 "If padding is non-zero, then the input is implicitly zero-padded" 748 "Padding support both symmetric and asymmetric as" 749 "one int : same padding used on all sides" 750 "two int : bottom, right will use same padding as top, left" 751 "four int : padding width in the order of (top, left, bottom, right)");
753 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 754 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 755 "dimensions respectively. Pooling is applied on the 'H' and" 760 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 761 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 762 "dimensions respectively. Pooling is applied on the 'H' and" 765 "When true, will use ceil instead of floor to compute the output shape.");
768 .describe(
"When true, will include padding to compute the average");
779 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 780 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 781 "dimensions respectively. Pooling is applied on the 'H' and" 786 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 787 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 788 "dimensions respectively. Pooling is applied on the 'H' and" 802 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc." 803 "'N', 'C', 'W' stands for batch, channel, and width" 804 "dimensions respectively. Pooling is applied on the" 809 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc." 810 "'N', 'C', 'W' stands for batch, channel, and width" 811 "dimensions respectively. Pooling is applied on the" 825 .describe(
"Output height and width.");
827 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 828 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 829 "dimensions respectively. Pooling is applied on the 'H' and" 834 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc." 835 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 836 "dimensions respectively. Pooling is applied on the 'H' and" 850 .describe(
"Output depth, height and width.");
852 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 853 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 854 "dimensions respectively. Pooling is applied on 'D', 'H' and" 859 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc." 860 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 861 "dimensions respectively. Pooling is applied on 'D', 'H' and" 877 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
880 .describe(
"Specifies the strides of the convolution.");
883 .describe(
"Specifies the dilation of the convolution.");
887 "If padding is non-zero, then the input is implicitly zero-padded" 888 "Padding support both symmetric and asymmetric as" 889 "one int : same padding used on all sides" 890 "three int : back, bottom, right will use same padding as front, top, left" 891 "six int : padding width in the order of (front, top, left, back, bottom, right)");
893 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc." 894 "'N', 'C', 'W' stands for batch, channel, and width" 895 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
899 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc." 900 "'N', 'C', 'W' stands for batch, channel, and width" 901 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
903 "When true, will use ceil instead of floor to compute the output shape.");
919 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
922 .describe(
"Specifies the strides of the convolution.");
925 .describe(
"Specifies the dilation of the convolution.");
929 "If padding is non-zero, then the input is implicitly zero-padded" 930 "Padding support both symmetric and asymmetric as" 931 "one int : same padding used on all sides" 932 "three int : back, bottom, right will use same padding as front, top, left" 933 "six int : padding width in the order of (front, top, left, back, bottom, right)");
935 "Dimension ordering of input data. Can be 'NCW', 'NHC', etc." 936 "'N', 'C', 'W' stands for batch, channel, and width" 937 "dimensions respectively. Pooling is applied on the 'W' dimension.");
941 "Dimension ordering of output data. Can be 'NCW', 'NHC', etc." 942 "'N', 'C', 'W' stands for batch, channel, and width" 943 "dimensions respectively. Pooling is applied on the 'W' dimension.");
945 "When true, will use ceil instead of floor to compute the output shape.");
948 .describe(
"When true, will include padding to compute the average");
963 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
966 .describe(
"Specifies the strides of the convolution.");
969 .describe(
"Specifies the dilation of the convolution.");
973 "If padding is non-zero, then the input is implicitly zero-padded" 974 "Padding support both symmetric and asymmetric as" 975 "one int : same padding used on all sides" 976 "three int : back, bottom, right will use same padding as front, top, left" 977 "six int : padding width in the order of (front, top, left, back, bottom, right)");
979 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 980 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 981 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 986 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc." 987 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 988 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 991 "When true, will use ceil instead of floor to compute the output shape.");
1007 TVM_ATTR_FIELD(pool_size).describe(
"Size of the pooling windows.");
1010 .describe(
"Specifies the strides of the convolution.");
1013 .describe(
"Specifies the dilation of the convolution.");
1017 "If padding is non-zero, then the input is implicitly zero-padded" 1018 "Padding support both symmetric and asymmetric as" 1019 "one int : same padding used on all sides" 1020 "three int : back, bottom, right will use same padding as front, top, left" 1021 "six int : padding width in the order of (front, top, left, back, bottom, right)");
1023 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 1024 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 1025 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 1030 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc." 1031 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 1032 "dimensions respectively. Pooling is applied on the 'D', 'H' and" 1035 "When true, will use ceil instead of floor to compute the output shape.");
1038 .describe(
"When true, will include padding to compute the average");
1051 TVM_ATTR_FIELD(units).describe(
"Number of hidden units of the dense transformation.");
1056 .describe(
"Output data type, set to explicit type under mixed precision setting");
1060 .describe(
"Whether the first input tensor is in transposed format.");
1064 .describe(
"Whether the second input tensor is in transposed format.");
1075 TVM_ATTR_FIELD(units).describe(
"Number of hidden units of the dense transformation.");
1080 .describe(
"Output data type, set to explicit type under mixed precision setting");
1091 TVM_ATTR_FIELD(units).describe(
"Number of hidden units of the dense transformation.");
1096 .describe(
"Output data type, set to explicit type under mixed precision setting");
1099 .describe(
"Dimension ordering of weight. Packed layouts, such as NC8n, are possible.");
1114 .describe(
"Output data type, set to explicit type under mixed precision setting");
1118 .describe(
"Whether the first input tensor is in transposed format.");
1122 .describe(
"Whether the second input tensor is in transposed format.");
1134 "Indicate whether sparse matrix is multiplied on the right or the left. If true, then " 1135 "the operation is S * D^T (D dense, S sparse). If false, the operation is D * S^T");
1151 "Dimension ordering of input data. Can be 'NCHW', 'NHWC'" 1152 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1153 "dimensions respectively.");
1156 .describe(
"Kernel size for SparseConv2D, 1x1 or 3x3. ");
1178 TVM_ATTR_FIELD(scale_h).describe(
"The upsampling factor for height");
1179 TVM_ATTR_FIELD(scale_w).describe(
"The upsampling factor for width");
1181 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1182 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1183 "dimensions respectively. Upsampling is applied on the 'H' and" 1186 .set_default(
"nearest_neighbor")
1188 "Specify the mode to use for scaling." 1189 "nearest_neighbor - Nearest Neighbor" 1190 "bilinear - Bilinear Interpolation" 1191 "bicubic - Bicubic Interpolation");
1194 .describe(
"Should be true to preserve the values at the corner pixels");
1208 TVM_ATTR_FIELD(scale_d).describe(
"The upsampling factor for depth");
1209 TVM_ATTR_FIELD(scale_h).describe(
"The upsampling factor for height");
1210 TVM_ATTR_FIELD(scale_w).describe(
"The upsampling factor for width");
1212 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc." 1213 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width" 1214 "dimensions respectively. Upsampling is applied on the 'D', 'H' and" 1217 .set_default(
"nearest_neighbor")
1219 "Specify the mode to use for scaling." 1220 "nearest_neighbor - Nearest Neighbor" 1221 "trilinear - Trilinear Interpolation");
1223 .set_default(
"half_pixel")
1225 "Describes how to transform the coordinate in the resized tensor" 1226 "to the coordinate in the original tensor." 1227 "Refer to the ONNX Resize operator specification for details" 1228 "Available options are half_pixel, align_corners and asymmetric");
1239 "Number of values padded to the edges of each axis, " 1240 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1242 .set_default(
"constant")
1244 "Padding type to use. \"constant\" pads with constant_value, " 1245 "\"edge\" pads using the edge values of the input array, " 1246 "\"reflect\" pads by reflecting values with respect to the edges.");
1257 .set_default(
"SYMMETRIC")
1258 .describe(
"Specifies how mirroring should be performed.");
1260 "Number of values padded to the edges of each axis, " 1261 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1270 TVM_ATTR_FIELD(alpha).set_lower_bound(0.0).set_default(0.25).describe(
1271 "Slope coefficient for the negative half axis.");
1281 "Specify which shape axis the channel is specified.");
1290 .describe(
"Fraction of the input that gets dropped out during training time")
1303 TVM_ATTR_FIELD(axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1305 .describe(
"Small float added to variance to avoid dividing by zero")
1308 .describe(
"If True, add offset of beta to normalized tensor. If False, beta is ignored")
1312 "If True, multiply by gamma. If False, gamma is not used. " 1313 "When the next layer is piecewise linear (also, e.g., nn.relu), " 1314 "this can be disabled since the scaling will be done by the next layer.")
1327 TVM_ATTR_FIELD(axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1329 .describe(
"Small float added to variance to avoid dividing by zero")
1332 "If true, add offset of beta to normalized tensor; " 1333 "otherwise, beta is ignored.");
1335 "If true, multiply by gamma; otherwise, gamma is ignored.");
1347 TVM_ATTR_FIELD(axis).set_default(-1).describe(
"Specify which shape axis denotes the channel.");
1349 "Small float added to variance to avoid dividing by zero");
1351 "If true, add offset of beta to normalized tensor; " 1352 "otherwise, beta is ignored.");
1354 "If true, multiply by gamma; otherwise, gamma is ignored.");
1369 .describe(
"Specify number of groups to separate the channels into.");
1370 TVM_ATTR_FIELD(axis).set_default(1).describe(
"Specify which shape axis denotes the channel.");
1372 "Small float added to variance to avoid dividing by zero");
1374 "If true, add offset of beta to normalized tensor; " 1375 "otherwise, beta is ignored.");
1377 "If true, multiply by gamma; otherwise, gamma is ignored.");
1391 "The size of the local region to be considered for normalization.");
1392 TVM_ATTR_FIELD(axis).set_default(1).describe(
"Axis of input data layout channel.");
1393 TVM_ATTR_FIELD(bias).set_default(2).describe(
"The offset parameter to avoid division by 0.");
1394 TVM_ATTR_FIELD(alpha).set_default(0.0001).describe(
"The scaling parameter.");
1395 TVM_ATTR_FIELD(beta).set_default(0.75).describe(
"The exponent parameter.");
1405 TVM_ATTR_FIELD(eps).describe(
"A lower bound value for the norm, to avoid division by 0.");
1406 TVM_ATTR_FIELD(axis).describe(
"Axis over the normalization applied.");
1427 .describe(
"Specifies the strides of the convolution.");
1431 "If padding is non-zero, then the input is implicitly zero-padded" 1432 "Padding support both symmetric and asymmetric as" 1433 "one int : same padding used on all sides" 1434 "two int : bottom, right will use same padding as top, left" 1435 "four int : padding width in the order of (top, left, bottom, right)");
1438 .describe(
"Specifies the dilation rate to use for dilated convolution.");
1442 "Controls the connections between inputs and offsets." 1443 "Input channels are partitioned into multiple deformable groups. Offsets" 1444 "are shared across input channels in the same deformable group.");
1446 "Controls the connections between inputs and outputs." 1447 "At groups=1, all inputs are convolved to all outputs." 1448 "At groups=2, the operation becomes equivalent to having two convolution" 1449 "layers side by side, each seeing half the input channels, and producing" 1450 "half the output channels, and both subsequently concatenated.");
1453 "The number of output channels in the convolution." 1454 " If it is not set, inferred by shape of the weight.")
1455 .set_default(NullValue<IndexExpr>());
1457 .describe(
"Specifies the dimensions of the convolution window.")
1460 .set_default(
"NCHW")
1462 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1463 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1464 "dimensions respectively. Convolution is applied on the 'H' and" 1467 .set_default(
"OIHW")
1469 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc." 1470 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width" 1471 "dimensions respectively.");
1475 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc." 1476 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1477 "dimensions respectively. Default to be same as input layout.");
1482 .describe(
"Output data type, set to explicit type under mixed precision setting");
1494 .describe(
"The size of subpixel blocks to compose or decompose.")
1497 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1498 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1499 "dimensions respectively.");
1501 "Indicates order in which channels are accessed. Must be one of" 1518 .describe(
"Kernel size for correlation, must be an odd number.")
1520 TVM_ATTR_FIELD(max_displacement).describe(
"Max displacement of Correlation.").set_default(1);
1521 TVM_ATTR_FIELD(stride1).describe(
"Stride for data1.").set_default(1);
1522 TVM_ATTR_FIELD(stride2).describe(
"Stride for data2.").set_default(1);
1524 .describe(
"Padding for data1 and data2.")
1527 .describe(
"Operation type is either multiplication or substraction.")
1530 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc." 1531 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width" 1532 "dimensions respectively.");
1545 .describe(
"1-D containing block size for each spatial dimension.");
1546 TVM_ATTR_FIELD(paddings).describe(
"2-D containing paddings for each spatial dimension.");
1547 TVM_ATTR_FIELD(pad_value).set_default(0.0).describe(
"The value used for padding.");
1559 .describe(
"1-D containing block size for each spatial dimension.");
1560 TVM_ATTR_FIELD(crops).describe(
"2-D containing amount to crop from spatial dimension.");
1571 "The reduction method to apply to the output. Can be" 1572 "'none', 'mean' or 'sum'.");
1573 TVM_ATTR_FIELD(ignore_index).describe(
"The target value to ignore.");
1579 #endif // TVM_RELAY_ATTRS_NN_H_ std::string data_layout
Definition: nn.h:621
Array< IndexExpr > dilation
Definition: nn.h:298
std::string layout
Definition: nn.h:1203
Attributes for max pool operator.
Definition: nn.h:683
TVM_DECLARE_ATTRS(NLLLossAttrs, "relay.attrs.NLLLossAttrs")
Definition: nn.h:1569
tvm::String out_layout
Definition: nn.h:873
Attributes for prelu operator.
Definition: nn.h:1276
Array< IndexExpr > padding
Definition: nn.h:729
std::string kernel_layout
Definition: nn.h:622
int axis
Definition: nn.h:43
Array< IndexExpr > kernel_size
Definition: nn.h:615
TVM_DECLARE_ATTRS(Conv3DWinogradAttrs, "relay.attrs.Conv3DWinogradAttrs")
Definition: nn.h:455
IndexExpr channels
Definition: nn.h:614
TVM_DECLARE_ATTRS(MaxPool1DAttrs, "relay.attrs.MaxPool1DAttrs")
Definition: nn.h:876
int size
Definition: nn.h:1383
tvm::String data_layout
Definition: nn.h:302
Attributes for FIFO buffer operator.
Definition: nn.h:1161
tvm::String out_layout
Definition: nn.h:120
Attributes used for the MirrorPadding operator.
Definition: nn.h:1251
Array< Integer > block_shape
Definition: nn.h:1553
TVM_DECLARE_ATTRS(L2NormalizeAttrs, "relay.attrs.L2NormalizeAttrs")
Definition: nn.h:1404
TVM_DECLARE_ATTRS(MaxPool2DAttrs, "relay.attrs.MaxPool2DAttrs")
Definition: nn.h:692
TVM_DECLARE_ATTRS(LayerNormAttrs, "relay.attrs.LayerNormAttrs")
Definition: nn.h:1346
TVM_DECLARE_ATTRS(BatchMatmulAttrs, "relay.attrs.BatchMatmulAttrs")
Definition: nn.h:1110
tvm::String data_layout
Definition: nn.h:118
bool count_include_pad
Definition: nn.h:1004
IndexExpr units
Definition: nn.h:1044
int num_groups
Definition: nn.h:1360
TVM_DECLARE_ATTRS(AdaptivePool3DAttrs, "relay.attrs.AdaptivePool3DAttrs")
Definition: nn.h:847
Array< IndexExpr > padding
Definition: nn.h:528
Array< IndexExpr > strides
Definition: nn.h:444
Attributes used in dilate operator.
Definition: nn.h:600
Array< IndexExpr > dilation
Definition: nn.h:446
Attributes for dense_pack operator.
Definition: nn.h:1085
double alpha
Definition: nn.h:1386
Array< IndexExpr > strides
Definition: nn.h:998
int groups
Definition: nn.h:55
DataType out_dtype
Definition: nn.h:215
TVM_DECLARE_ATTRS(FIFOBufferAttrs, "relay.attrs.FIFOBufferAttrs")
Definition: nn.h:1164
Performance counters for profiling via the PAPI library.
Definition: analyzer.h:36
int groups
Definition: nn.h:620
IndexExpr channels
Definition: nn.h:209
Add a 1D Tensor to an axis of a data.
Definition: nn.h:42
Array< IndexExpr > output_padding
Definition: nn.h:529
std::string out_layout
Definition: nn.h:60
TVM_DECLARE_ATTRS(LRNAttrs, "relay.attrs.LRNAttrs")
Definition: nn.h:1389
Attributes for 3d adaptive pool operator.
Definition: nn.h:842
IndexExpr channels
Definition: nn.h:367
std::string data_layout
Definition: nn.h:374
tvm::String layout
Definition: nn.h:731
Array< Array< IndexExpr > > paddings
Definition: nn.h:1539
tvm::String out_layout
Definition: nn.h:213
Array< IndexExpr > kernel_size
Definition: nn.h:526
double scale_d
Definition: nn.h:1200
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1048
TVM_DECLARE_ATTRS(SoftmaxAttrs, "relay.attrs.SoftmaxAttrs")
Definition: nn.h:518
TVM_DECLARE_ATTRS(Conv2DWinogradAttrs, "relay.attrs.Conv2DWinogradAttrs")
Definition: nn.h:217
TVM_DECLARE_ATTRS(DilateAttrs, "relay.attrs.DilateAttrs")
Definition: nn.h:604
int groups
Definition: nn.h:531
std::string layout
Definition: nn.h:913
TVM_DECLARE_ATTRS(MaxPool3DAttrs, "relay.attrs.MaxPool3DAttrs")
Definition: nn.h:962
Array< IndexExpr > pool_size
Definition: nn.h:909
Array< IndexExpr > dilation
Definition: nn.h:54
Attributes for 3D max pool operator.
Definition: nn.h:953
double epsilon
Definition: nn.h:1322
Array< IndexExpr > output_size
Definition: nn.h:795
TVM_DECLARE_ATTRS(SparseDenseAttrs, "relay.attrs.SparseDenseAttrs")
Definition: nn.h:1130
TVM_DECLARE_ATTRS(Conv3DTransposeAttrs, "relay.attrs.Conv3DTransposeAttrs")
Definition: nn.h:379
TVM_DECLARE_ATTRS(UpSamplingAttrs, "relay.attrs.UpSamplingAttrs")
Definition: nn.h:1177
int groups
Definition: nn.h:115
int ignore_index
Definition: nn.h:1567
TVM_DECLARE_ATTRS(SpaceToBatchNDAttrs, "relay.attrs.SpaceToBatchNDAttrs")
Definition: nn.h:1542
int kernel_size
Definition: nn.h:1508
Attributes for matmul operator.
Definition: nn.h:1043
double scale_w
Definition: nn.h:1172
tvm::String layout
Definition: nn.h:1173
Attributes used in BatchToSpaceND operator.
Definition: nn.h:1552
Attributes used in layer_norm operator.
Definition: nn.h:1340
bool scale
Definition: nn.h:1344
DataType out_dtype
Definition: nn.h:377
IndexExpr channels
Definition: nn.h:300
Array< IndexExpr > strides
Definition: nn.h:869
Array< IndexExpr > dilation
Definition: nn.h:911
Array< IndexExpr > strides
Definition: nn.h:52
double dilation_value
Definition: nn.h:602
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1071
bool center
Definition: nn.h:1323
std::string data_layout
Definition: nn.h:450
bool scale
Definition: nn.h:1300
Attributes used in subpixel operators.
Definition: nn.h:1487
bool sparse_lhs
Definition: nn.h:1128
Attributes for leaky relu operator.
Definition: nn.h:1266
TVM_DECLARE_ATTRS(AdaptivePool1DAttrs, "relay.attrs.AdaptivePool1DAttrs")
Definition: nn.h:799
Array< IndexExpr > kernel_size
Definition: nn.h:57
int axis
Definition: nn.h:1321
double eps
Definition: nn.h:1401
std::string mode
Definition: nn.h:1252
tvm::String layout
Definition: nn.h:688
std::string kernel_layout
Definition: nn.h:59
tvm::String out_layout
Definition: nn.h:959
std::string kernel_layout
Definition: nn.h:533
bool count_include_pad
Definition: nn.h:734
tvm::String out_layout
Definition: nn.h:845
DataType out_dtype
Definition: nn.h:1087
TVM_DECLARE_ATTRS(Conv1DTransposeAttrs, "relay.attrs.Conv1DTransposeAttrs")
Definition: nn.h:626
bool align_corners
Definition: nn.h:1175
TVM_DECLARE_ATTRS(CorrelationAttrs, "relay.attrs.CorrelationAttrs")
Definition: nn.h:1516
TVM_DECLARE_ATTRS(AdaptivePool2DAttrs, "relay.attrs.AdaptivePool2DAttrs")
Definition: nn.h:822
int axis
Definition: nn.h:1297
TVM_DECLARE_ATTRS(BiasAddAttrs, "relay.attrs.BiasAddAttrs")
Definition: nn.h:45
TVM_DECLARE_ATTRS(Conv2DAttrs, "relay.attrs.Conv2DAttrs")
Definition: nn.h:124
IndexExpr channels
Definition: nn.h:525
Attributes used in batch_norm operator.
Definition: nn.h:1296
TVM_DECLARE_ATTRS(LeakyReluAttrs, "relay.attrs.LeakyReluAttrs")
Definition: nn.h:1269
Helpers for attribute objects.
Attributes used in convolution operators with winograd algorithm.
Definition: nn.h:203
Attributes used in 3d winograd convolution operators.
Definition: nn.h:442
Attributes for avg pool operator.
Definition: nn.h:726
Attributes used in correlation operators.
Definition: nn.h:1507
tvm::String out_layout
Definition: nn.h:1002
TVM_DECLARE_ATTRS(Conv1DAttrs, "relay.attrs.Conv1DAttrs")
Definition: nn.h:63
Array< IndexExpr > pool_size
Definition: nn.h:727
Array< IndexExpr > dilation
Definition: nn.h:530
tvm::String layout
Definition: nn.h:774
int groups
Definition: nn.h:299
Array< IndexExpr > output_size
Definition: nn.h:843
TVM_DECLARE_ATTRS(DenseAttrs, "relay.attrs.DenseAttrs")
Definition: nn.h:1074
int block_size
Definition: nn.h:1488
Array< IndexExpr > strides
Definition: nn.h:296
TVM_DECLARE_ATTRS(MirrorPadAttrs, "relay.attrs.MirrorPadAttrs")
Definition: nn.h:1255
Array< Array< IndexExpr > > pad_width
Definition: nn.h:1253
Attributes for 2d adaptive pool operator.
Definition: nn.h:817
Array< IndexExpr > dilation
Definition: nn.h:207
IndexExpr units
Definition: nn.h:1086
std::string layout
Definition: nn.h:1489
TVM_DECLARE_ATTRS(BatchNormAttrs, "relay.attrs.BatchNormAttrs")
Definition: nn.h:1302
double scale_h
Definition: nn.h:1171
Array< IndexExpr > padding
Definition: nn.h:871
Array< IndexExpr > padding
Definition: nn.h:686
bool transpose_b
Definition: nn.h:1107
Attributes used in convolution operators.
Definition: nn.h:295
TVM_DECLARE_ATTRS(GroupNormAttrs, "relay.attrs.GroupNormAttrs")
Definition: nn.h:1366
TVM_DECLARE_ATTRS(AvgPool1DAttrs, "relay.attrs.AvgPool1DAttrs")
Definition: nn.h:918
Array< IndexExpr > padding
Definition: nn.h:297
TVM_DECLARE_ATTRS(UpSampling3DAttrs, "relay.attrs.UpSampling3DAttrs")
Definition: nn.h:1207
Array< IndexExpr > padding
Definition: nn.h:113
std::string method
Definition: nn.h:1204
std::string layout
Definition: nn.h:872
double epsilon
Definition: nn.h:1298
bool ceil_mode
Definition: nn.h:1003
std::string layout
Definition: nn.h:1001
Runtime primitive data type.
Definition: data_type.h:41
tvm::String method
Definition: nn.h:1174
int tile_size
Definition: nn.h:204
std::string out_layout
Definition: nn.h:452
Array< IndexExpr > padding
Definition: nn.h:370
Array< IndexExpr > strides
Definition: nn.h:685
TVM_DECLARE_ATTRS(SparseConv2DAttrs, "relay.attrs.SparseConv2DAttrs")
Definition: nn.h:1149
Array< IndexExpr > pool_size
Definition: nn.h:954
std::string data_layout
Definition: nn.h:58
bool count_include_pad
Definition: nn.h:916
Attributes used in 1D transposed convolution operator.
Definition: nn.h:613
bool center
Definition: nn.h:1343
Array< IndexExpr > padding
Definition: nn.h:206
tvm::String out_layout
Definition: nn.h:914
TVM_DECLARE_ATTRS(DropoutAttrs, "relay.attrs.DropoutAttrs")
Definition: nn.h:1288
String layout
Definition: nn.h:1514
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:214
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:270
int groups
Definition: nn.h:208
Array< IndexExpr > kernel_size
Definition: nn.h:449
std::string layout
Definition: nn.h:844
Attributes for upsampling3d operator.
Definition: nn.h:1199
std::string data_layout
Definition: nn.h:532
Array< IndexExpr > strides
Definition: nn.h:955
Array< IndexExpr > output_padding
Definition: nn.h:371
double scale_h
Definition: nn.h:1201
Array< IndexExpr > padding
Definition: nn.h:617
Attributes used in transposed convolution operator.
Definition: nn.h:366
Array< IndexExpr > kernel_size
Definition: nn.h:210
Array< Integer > block_shape
Definition: nn.h:1538
IndexExpr channels
Definition: nn.h:56
std::string coordinate_transformation_mode
Definition: nn.h:1205
Attributes used in SpaceToBatchND operator.
Definition: nn.h:1537
TVM_DECLARE_ATTRS(SparseTransposeAttrs, "relay.attrs.SparseTransposeAttrs")
Definition: nn.h:1141
double alpha
Definition: nn.h:1267
#define TVM_ATTR_FIELD(FieldName)
Declare an attribute field.
Definition: attrs.h:76
Attributes used in transposed convolution operator.
Definition: nn.h:524
bool center
Definition: nn.h:1363
Attributes for 3D avg pool operator.
Definition: nn.h:996
Reference to string objects.
Definition: string.h:129
Array< Array< Integer > > pad_width
Definition: nn.h:1234
DataType out_dtype
Definition: nn.h:122
std::string out_layout
Definition: nn.h:623
Array< IndexExpr > dilation
Definition: nn.h:730
TVM_DECLARE_ATTRS(MatmulAttrs, "relay.attrs.MatmulAttrs")
Definition: nn.h:1050
Attributes for sparse_dense operator.
Definition: nn.h:1127
Array< IndexExpr > strides
Definition: nn.h:112
bool ceil_mode
Definition: nn.h:874
Attributes for global pool operator.
Definition: nn.h:773
double beta
Definition: nn.h:1387
Attributes used in softmax operators.
Definition: nn.h:515
Attributes used in convolution operators.
Definition: nn.h:111
DataType out_dtype
Definition: nn.h:1045
Attributes used in NLLLoss operator.
Definition: nn.h:1565
tvm::String out_layout
Definition: nn.h:820
int max_displacement
Definition: nn.h:1509
Array< IndexExpr > kernel_size
Definition: nn.h:301
Attributes for 1D max pool operator.
Definition: nn.h:867
Array< IndexExpr > output_size
Definition: nn.h:818
double scale_w
Definition: nn.h:1202
TVM_DECLARE_ATTRS(Conv2DTransposeAttrs, "relay.attrs.Conv2DTransposeAttrs")
Definition: nn.h:537
TVM_DECLARE_ATTRS(BatchToSpaceNDAttrs, "relay.attrs.BatchToSpaceNDAttrs")
Definition: nn.h:1556
std::string kernel_layout
Definition: nn.h:375
DataType NullValue< DataType >()
Definition: attrs.h:90
bool scale
Definition: nn.h:1364
int axis
Definition: nn.h:1341
tvm::String kernel_layout
Definition: nn.h:303
tvm::String weight_layout
Definition: nn.h:1088
std::string layout
Definition: nn.h:958
Array< IndexExpr > padding
Definition: nn.h:1000
Attributes for batch matmul operator.
Definition: nn.h:1104
Attributes used in dropout operator.
Definition: nn.h:1286
tvm::String out_layout
Definition: nn.h:732
std::string kernel_layout
Definition: nn.h:451
Array< IndexExpr > strides
Definition: nn.h:728
int stride2
Definition: nn.h:1511
Attributes for sparse_dense operator.
Definition: nn.h:1145
Attributes for dense operator.
Definition: nn.h:1069
bool ceil_mode
Definition: nn.h:690
int groups
Definition: nn.h:447
std::string out_layout
Definition: nn.h:376
tvm::String kernel_layout
Definition: nn.h:119
TVM_DECLARE_ATTRS(GlobalPool2DAttrs, "relay.attrs.GlobalPool2DAttrs")
Definition: nn.h:777
Array< IndexExpr > dilation
Definition: nn.h:372
IndexExpr channels
Definition: nn.h:116
Array< IndexExpr > kernel_size
Definition: nn.h:117
Array< IndexExpr > padding
Definition: nn.h:53
int axis
Definition: nn.h:1277
IndexExpr units
Definition: nn.h:1070
Attributes for 1d adaptive pool operator.
Definition: nn.h:794
DataType out_dtype
Definition: nn.h:453
bool transpose_a
Definition: nn.h:1106
Array< IndexExpr > strides
Definition: nn.h:616
Array< IndexExpr > pool_size
Definition: nn.h:997
IndexExpr channels
Definition: nn.h:448
tvm::String out_layout
Definition: nn.h:797
bool ceil_mode
Definition: nn.h:960
Array< IndexExpr > pool_size
Definition: nn.h:684
The base class of the all the Use "curiously recurring template pattern".
Definition: attrs.h:793
DataType out_dtype
Definition: nn.h:535
Array< IndexExpr > output_padding
Definition: nn.h:618
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:121
tvm::String kernel_layout
Definition: nn.h:212
Attributes for upsampling operator.
Definition: nn.h:1170
DataType out_dtype
Definition: nn.h:61
DataType out_dtype
Definition: nn.h:306
int axis
Definition: nn.h:516
bool transpose_b
Definition: nn.h:1047
bool transpose_a
Definition: nn.h:1046
Attributes used in instance_norm operator.
Definition: nn.h:1320
Array< IndexExpr > dilation
Definition: nn.h:956
Attributes for LRN operator.
Definition: nn.h:1382
Array< IndexExpr > strides
Definition: nn.h:369
Base classes for the Relay IR.
std::string pad_mode
Definition: nn.h:1235
tvm::String out_layout
Definition: nn.h:689
Array< IndexExpr > strides
Definition: nn.h:205
TVM_DECLARE_ATTRS(InstanceNormAttrs, "relay.attrs.InstanceNormAttrs")
Definition: nn.h:1326
Array< IndexExpr > strides
Definition: nn.h:910
bool scale
Definition: nn.h:1324
TVM_DECLARE_ATTRS(DensePackAttrs, "relay.attrs.DensePackAttrs")
Definition: nn.h:1090
TVM_DECLARE_ATTRS(AvgPool3DAttrs, "relay.attrs.AvgPool3DAttrs")
Definition: nn.h:1006
Attributes used in group_norm operator.
Definition: nn.h:1359
bool ceil_mode
Definition: nn.h:733
TVM_DECLARE_ATTRS(PadAttrs, "relay.attrs.PadAttrs")
Definition: nn.h:1237
TObjectRef NullValue()
Create a NodeRef type that represents null.
Definition: attrs.h:84
Attributes used for the padding operator.
Definition: nn.h:1233
TVM_DECLARE_ATTRS(AvgPool2DAttrs, "relay.attrs.AvgPool2DAttrs")
Definition: nn.h:736
bool ceil_mode
Definition: nn.h:915
Reference to PrimExprNode.
Definition: expr.h:109
Array< IndexExpr > padding
Definition: nn.h:445
DataType out_dtype
Definition: nn.h:1105
int axis
Definition: nn.h:1162
TVM_DECLARE_ATTRS(Conv3DAttrs, "relay.attrs.Conv3DAttrs")
Definition: nn.h:308
double rate
Definition: nn.h:1287
Array< IndexExpr > dilation
Definition: nn.h:114
double bias
Definition: nn.h:1385
Array< Integer > axis
Definition: nn.h:1402
Array< IndexExpr > padding
Definition: nn.h:1512
Attributes for sparse_transpose operator.
Definition: nn.h:1140
Array< IndexExpr > dilation
Definition: nn.h:999
std::string layout
Definition: nn.h:796
TVM_DECLARE_ATTRS(SubPixelAttrs, "relay.attrs.SubPixelAttrs")
Definition: nn.h:1492
int axis
Definition: nn.h:1384
Array< IndexExpr > strides
Definition: nn.h:601
std::string reduction
Definition: nn.h:1566
int axis
Definition: nn.h:1361
DataType out_dtype
Definition: nn.h:624
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1108
Array< IndexExpr > dilation
Definition: nn.h:687
Array< IndexExpr > kernel_size
Definition: nn.h:1147
double epsilon
Definition: nn.h:1362
Array< IndexExpr > strides
Definition: nn.h:527
TVM_DECLARE_ATTRS(PReluAttrs, "relay.attrs.PReluAttrs")
Definition: nn.h:1279
tvm::String data_layout
Definition: nn.h:211
std::string layout
Definition: nn.h:1146
int tile_size
Definition: nn.h:443
Array< IndexExpr > padding
Definition: nn.h:912
bool is_multiply
Definition: nn.h:1513
Array< IndexExpr > dilation
Definition: nn.h:619
double epsilon
Definition: nn.h:1342
Array< IndexExpr > dilation
Definition: nn.h:870
int stride1
Definition: nn.h:1510
Array< IndexExpr > pool_size
Definition: nn.h:868
double pad_value
Definition: nn.h:1540
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:305
Attributes for L2Normalize operator.
Definition: nn.h:1400
std::string out_layout
Definition: nn.h:534
tvm::String out_layout
Definition: nn.h:304
std::string layout
Definition: nn.h:819
DataType out_dtype
Definition: nn.h:1072
Array< Array< IndexExpr > > crops
Definition: nn.h:1554
std::string mode
Definition: nn.h:1490
Array< IndexExpr > kernel_size
Definition: nn.h:368
int groups
Definition: nn.h:373
Attributes used in 1D convolution operators.
Definition: nn.h:51
Array< IndexExpr > padding
Definition: nn.h:957
tvm::String out_layout
Definition: nn.h:775
Attributes for 1D avg pool operator.
Definition: nn.h:908
bool center
Definition: nn.h:1299