24 #ifndef TVM_TOPI_TRANSFORM_H_ 25 #define TVM_TOPI_TRANSFORM_H_ 41 #include <unordered_set> 48 using namespace topi::detail;
63 std::string name =
"T_expand_dims", std::string tag =
kBroadcast) {
64 int ndim =
static_cast<int>(x->shape.size());
65 ICHECK(-ndim - 1 <= axis && axis <= ndim)
66 <<
"expand_dims only accepts `axis` in [-data.ndim - 1, data.ndim]" 67 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
68 ICHECK(num_newaxis >= 0) <<
"expand_dims only accepts `num_newaxis >= 0`" 69 <<
", but got num_newaxis = " << num_newaxis;
72 axis = ndim + axis + 1;
75 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
78 for (
size_t i = 0; i < static_cast<size_t>(num_newaxis); ++i) {
81 for (
size_t i = axis; i < x->shape.size(); ++i) {
89 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
92 for (
size_t i = axis + num_newaxis; i < indices.
size(); ++i) {
115 for (
int i = static_cast<int>(x->shape.size()) - 1; i >= 0; --i) {
121 for (
size_t i = 0; i < axes.
size(); ++i) {
122 int axis =
static_cast<int>(axes[i]->value);
125 new_axis =
static_cast<int>(x->shape.size()) + axis;
126 axes.
Set(i, new_axis);
128 ICHECK((new_axis >= 0) && (new_axis < static_cast<int>(x->shape.size())))
129 <<
"axis=" << axis <<
" is invalid for the " << static_cast<int>(x->shape.size())
130 <<
"-dimensional input tensor";
132 for (
size_t j = 0; j < axes.
size(); ++j) {
134 ICHECK(new_axis != static_cast<int>(axes[j]->value)) <<
"repeated axis in transpose";
143 std::vector<PrimExpr> idx;
144 for (
size_t i = 0; i < axes.
size(); ++i) {
147 for (
size_t i = 0; i < axes.
size(); ++i) {
148 int axis =
static_cast<int>(axes[i]->value);
149 idx[axis] = indices[i];
171 int batch_axis = 0, std::string name =
"T_reverse_sequence",
173 size_t src_tensor_dim = x->shape.size();
174 int seq_axis_inp = seq_axis;
177 size_t seq_lengths_dim = seq_lengths->shape.size();
178 int batch_axis_inp = batch_axis;
179 if (batch_axis < 0) {
180 batch_axis =
static_cast<int>(x->shape.size()) + batch_axis;
183 ICHECK(seq_lengths_dim == 1) <<
"seq_lengths should be 1D vector";
185 ICHECK(GetConstInt(seq_lengths->shape[0]) == GetConstInt(x->shape[batch_axis]))
186 <<
"For reverse_sequnece seq_lengths size should match with dimension of batch axis" 187 <<
", but got dimension of batch_axis = " << GetConstInt(x->shape[batch_axis])
188 <<
", and seq_length size = " << GetConstInt(seq_lengths->shape[0]);
190 ICHECK((0 <= batch_axis) && (batch_axis < static_cast<int>(x->shape.size())))
191 <<
"batch_axis=" << batch_axis_inp <<
" is invalid for the " 192 << static_cast<int>(x->shape.size()) <<
"-dimensional input tensor";
196 seq_axis =
static_cast<int>(x->shape.size()) + seq_axis;
198 ICHECK((0 <= seq_axis) && (seq_axis < static_cast<int>(x->shape.size())))
199 <<
"seq_axis=" << seq_axis_inp <<
" is invalid for the " << static_cast<int>(x->shape.size())
200 <<
"-dimensional input tensor";
204 for (
size_t i = 0; i < src_tensor_dim; ++i) {
205 if (i == static_cast<size_t>(seq_axis)) {
207 auto len = seq_lengths(indices[batch_axis]);
209 len <= 1 || len <= indices[i], indices[i],
210 if_then_else(len > x->shape[i], x->shape[i] - 1 - indices[i], len - 1 - indices[i]));
213 real_indices.
push_back(x->shape[i] - 1 - indices[i]);
219 return x(real_indices);
222 return compute(x->shape, func, name, tag);
237 auto x_shape = x->shape;
240 for (
const auto& ele : newshape) {
248 if (is_empty_shape(target_shape)) {
250 target_shape, [&](
const Array<Var>& indices) {
return tvm::cast(x->dtype, 0); }, name, tag);
255 return x(UnravelIndex(
275 auto x_shape = x->shape;
276 auto shape_shape = shape->shape;
280 if (x_shape.size() != 0) {
286 std::vector<PrimExpr> indices_divs;
291 if (x_shape.size() != 0) {
292 index_val = x[indices[1]];
296 indices_divs.push_back(index_val);
297 for (
int v = GetConstInt(shape_shape[0]) - 1; v >= 0; --v) {
299 cur_val =
indexdiv(indices_divs.back(), shape[v]);
300 indices_divs.push_back(cur_val);
305 return compute(oshape, func, name, tag);
322 std::string name =
"T_squeeze", std::string tag =
kInjective) {
323 auto ndim = x->shape.size();
324 std::vector<int> axis_val;
326 for (
size_t i = 0; i < ndim; ++i) {
327 if (IsConstInt(x->shape[i]) && GetConstInt(x->shape[i]) == 1) {
328 axis_val.push_back(static_cast<int>(i));
332 for (
size_t i = 0; i < axis.
size(); ++i) {
333 int64_t val = axis[i]->value;
335 val +=
static_cast<int>(x->shape.size());
337 if (IsConstInt(x->shape[val])) {
338 ICHECK_EQ(GetConstInt(x->shape[val]), 1) <<
"Dimension " << val <<
" must have size 1";
344 std::unordered_set<int> axis_set(axis_val.begin(), axis_val.end());
347 for (
size_t i = 0; i < ndim; ++i) {
348 if (axis_set.count(static_cast<int>(i)) == 0) {
352 if (out_shape.size() == 0 && atleast1d) {
353 out_shape.push_back(1);
361 for (
size_t i = 0; i < ndim; ++i) {
362 if (axis_set.count(static_cast<int>(i)) == 0) {
363 real_indices.
push_back(indices[i - flag]);
369 return x(real_indices);
386 int ndim =
static_cast<int>(inputs[0]->shape.
size());
387 ICHECK(-ndim <= axis && axis < ndim) <<
"concatenate only accepts `axis` in [-ndim, ndim)" 388 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
392 ICHECK_LT(axis, inputs[0]->
shape.size()) <<
"axis out of bounds";
395 for (
auto t : inputs) {
400 for (
size_t i = 1; i < axis_sizes.size(); ++i) {
401 join_size += axis_sizes[i];
403 join_size = analyzer.
Simplify(join_size);
405 for (
size_t i = 0; i < inputs[0]->shape.size(); ++i) {
406 out_shape.
push_back(i == static_cast<size_t>(axis) ? join_size : inputs[0]->
shape[i]);
412 auto ret = inputs[0](indices);
413 auto ind = indices[axis];
414 for (
size_t i = 0; i < inputs.size() - 1; ++i) {
415 ind -= axis_sizes[i];
418 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
422 for (
size_t i = axis + 1; i < indices.
size(); ++i) {
445 int ndim =
static_cast<int>(inputs[0]->shape.
size());
446 ICHECK(-ndim - 1 <= axis && axis <= ndim)
447 <<
"stack only accepts `axis` in [-ndim, ndim)" 448 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
452 ICHECK_LT(axis, inputs[0]->
shape.size() + 1) <<
"axis out of bounds";
454 const int stack_size =
static_cast<int>(inputs.
size());
456 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) out_shape.
push_back(inputs[0]->shape[i]);
458 for (
size_t i = static_cast<size_t>(axis); i < static_cast<size_t>(ndim); ++i)
459 out_shape.
push_back(inputs[0]->shape[i]);
465 for (
size_t i = 0; i < indices.
size(); ++i)
466 if (i != static_cast<size_t>(axis)) idx.
push_back(indices[i]);
467 auto ind = indices[axis];
468 auto ret = inputs[0](idx);
469 for (
int i = 0; i < static_cast<int>(inputs.
size() - 1); ++i) {
490 std::string name =
"T_split", std::string tag =
kInjective) {
492 axis +=
static_cast<int>(x->shape.size());
494 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
496 auto src_axis_size = x->shape[axis];
497 std::vector<PrimExpr> begin_ids;
498 begin_ids.push_back(0);
500 for (
auto idx : split_indices) {
502 auto back_node = begin_ids.back().as<
IntImmNode>();
503 if (idx_node && back_node) {
504 ICHECK_GT(idx_node->value, back_node->
value) <<
"split_indices must be sorted";
506 begin_ids.push_back(idx);
510 for (
size_t i = 0; i < begin_ids.size(); ++i) {
512 if (i == begin_ids.size() - 1) {
513 out_axis_size = src_axis_size - begin_ids[i];
515 out_axis_size = begin_ids[i + 1] - begin_ids[i];
519 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
523 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
531 for (
size_t i = 0; i < begin_ids.size(); ++i) {
535 auto begin = begin_ids[i];
537 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
540 real_indices.
push_back(indices[axis] + begin);
541 for (
size_t j = axis + 1; j < indices.
size(); ++j) {
545 return x(real_indices);
568 std::string name =
"T_dynamic_strided_slice",
570 const size_t src_tensor_dim = x->shape.size();
571 ICHECK_LE(begin.
size(), src_tensor_dim);
572 ICHECK_LE(end.
size(), src_tensor_dim);
573 ICHECK_LE(strides.
size(), src_tensor_dim);
574 ICHECK_EQ(begin.
size(), end.
size());
575 ICHECK_EQ(begin.
size(), strides.
size());
577 const size_t num_slice_axes = begin.
size();
580 for (
size_t i = 0; i < num_slice_axes; ++i) {
581 auto d =
indexdiv(end[i] - begin[i], strides[i]);
590 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
598 for (
size_t i = 0; i < num_slice_axes; ++i) {
599 real_indices.
push_back(indices[i] * strides[i] +
tvm::min(begin[i], x->shape[i] - 1));
602 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
605 return x(real_indices);
625 std::string name =
"T_strided_slice_dynamic",
627 const int64_t num_dynamic_axes = begin->shape[0].
as<
IntImmNode>()->value;
632 for (int64_t i = 0; i < num_dynamic_axes; ++i) {
636 strides_expr.
push_back(strides(i64_ind));
659 std::vector<int64_t> begin_vec, end_vec, strides_vec;
660 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
661 auto begin_canonicalized = StridedSliceCanonicalizeBegin(ishape, begin_vec, strides_vec, axes,
662 begin[0]->dtype, slice_mode);
664 begin_canonicalized,
true);
686 std::string name =
"T_strided_slice_with_axes",
688 const size_t src_tensor_dim = x->shape.size();
689 ICHECK(axes.
size() <= src_tensor_dim);
692 std::vector<int64_t> begin_vec, end_vec, strides_vec;
693 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
695 auto begin_expr = StridedSliceCanonicalizeBegin(x->shape, begin_vec, strides_vec, axes,
696 begin[0]->dtype, slice_mode);
698 slice_mode, begin_expr);
704 for (
size_t i = 0; i < out_shape.size(); ++i) real_indices.
push_back(indices[i]);
705 for (
size_t i = 0; i < axes.
size(); ++i) {
706 auto stride =
make_const(strides[i].dtype(), strides_vec[i]);
707 PrimExpr ind = indices[axes[i]] * stride + begin_expr[i];
708 real_indices.
Set(axes[i], ind);
710 return x(real_indices);
731 std::string name =
"T_strided_slice", std::string tag =
kInjective) {
732 size_t src_tensor_dim =
static_cast<size_t>(x->shape.size());
734 for (
size_t i = 0; i < src_tensor_dim; ++i) axes.
push_back(i);
743 for (
size_t i = strides.
size(); i < src_tensor_dim; ++i) {
746 for (
size_t i = begin.
size(); i < src_tensor_dim; ++i) {
747 begin_full.
push_back(GetConstInt(strides_full[i]) > 0 ? zero : max_range);
749 for (
size_t i = end.
size(); i < src_tensor_dim; ++i) {
750 end_full.
push_back(GetConstInt(strides_full[i]) < 0 ? zero : max_range);
770 std::string name =
"T_split_sections",
773 axis +=
static_cast<int>(x->shape.size());
775 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
777 auto src_axis_size = x->shape[axis];
779 ICHECK_GT(num_sections, 0) <<
"Slice count must be > 0";
781 if (
auto node = src_axis_size.as<
IntImmNode>()) {
782 ICHECK_EQ(node->value % num_sections, 0)
783 <<
"num_sections must be an integer factor of the size of axis " << axis <<
" (" 784 << node->value <<
")";
788 auto seg_size =
indexdiv(src_axis_size, num_sections);
789 for (
int i = 0; i < num_sections; ++i) {
796 return split(x, split_indices, axis, name, tag);
813 std::string mode =
"clip", std::string name =
"T_take",
818 for (
size_t i = 0; i < a_shape.
size(); ++i) {
819 a_size = a_size * a_shape[i];
822 if (mode ==
"clip") {
827 return a(UnravelIndex(idx, a_shape));
830 }
else if (mode ==
"fast") {
831 LOG(WARNING) <<
"Fast mode segfaults when there are out-of-bounds indices. " 832 "Make sure input indices are in bound";
835 [&](
const Array<Var>& out_index) {
return a(UnravelIndex(indices(out_index), a_shape)); },
842 return a(UnravelIndex(idx, a_shape));
861 int axis, std::string name =
"T_sequence_mask",
863 ICHECK(axis == 0 || axis == 1) <<
"axis must be either 0 or 1";
864 ICHECK_EQ(valid_length->shape.size(), 1) <<
"valid_length must have ndim=1, i.e., (batch_size,).";
865 auto length_dim = data->shape[axis];
866 auto batch_dim = data->shape[1 - axis];
872 auto tid = out_index[axis];
873 auto bid = out_index[1 - axis];
899 std::string mode =
"clip", std::string name =
"T_take",
902 axis +=
static_cast<int>(a->shape.size());
904 ICHECK_GE(axis, 0) <<
"axis out of bounds";
905 ICHECK_LT(axis, a->shape.size()) <<
"axis out of bounds";
906 auto axis_dim = a->shape[axis];
907 int indices_len =
static_cast<int>(indices->shape.size());
909 int batch_dims_ = batch_dims;
910 if (batch_dims_ != 0) {
911 ICHECK_GE(batch_dims_, -static_cast<int>(indices->shape.size())) <<
"batch_dims out of bounds";
912 ICHECK_LE(batch_dims_, indices->shape.size()) <<
"batch_dims out of bounds";
914 if (batch_dims_ < 0) {
915 batch_dims_ = indices->shape.size() + batch_dims_;
918 ICHECK_LT(batch_dims_, a->shape.size()) <<
"batch_dims out of bounds";
919 ICHECK_LE(batch_dims_, axis) <<
"batch_dims must be less than or equal to axis";
920 for (
int i = 0; i < batch_dims_; ++i) {
921 auto addr1 = a->shape[i];
922 auto addr2 = indices->shape[i];
923 auto v1 =
static_cast<IntImm*
>(&addr1)->
get()->value;
924 auto v2 =
static_cast<IntImm*
>(&addr2)->
get()->value;
925 ICHECK_EQ(v1, v2) <<
"a.shape[" << i <<
"] should be equal to indices.shape[" << i <<
"]";
933 for (
int i = 0; i < batch_dims_; ++i) {
936 for (
int i = batch_dims_; i < axis; ++i) {
939 for (
size_t i = static_cast<size_t>(batch_dims_); i < indices->shape.size(); ++i) {
942 for (
size_t i = axis + 1; i < a->shape.size(); ++i) {
946 if (mode ==
"clip") {
947 if (batch_dims_ == 0) {
952 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
953 indices_position.
push_back(out_index[j]);
956 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
961 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
964 return a(real_indices);
972 for (
size_t j = 0; j < static_cast<size_t>(batch_dims_); ++j) {
973 indices_position.
push_back(out_index[j]);
975 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len - batch_dims_); ++j) {
976 indices_position.
push_back(out_index[j]);
979 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
984 for (
size_t j = axis + indices_len - batch_dims_; j < out_index.
size(); ++j) {
987 return a(real_indices);
991 }
else if (mode ==
"fast") {
992 LOG(WARNING) <<
"Fast mode segfaults when there are out-of-bounds indices. " 993 "Make sure input indices are in bound";
998 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
999 indices_position.
push_back(out_index[j]);
1002 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1005 real_indices.
push_back(indices(indices_position));
1006 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1009 return a(real_indices);
1017 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1018 indices_position.
push_back(out_index[j]);
1021 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1024 auto idx =
truncmod(
truncmod(indices(indices_position), axis_dim) + axis_dim, axis_dim);
1026 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1029 return a(real_indices);
1047 std::string name =
"T_where", std::string tag =
kBroadcast) {
1048 ICHECK_EQ(x->dtype, y->dtype) <<
"x and y must have the same dtype: " << x->dtype <<
" vs " 1050 auto get_out_shape = [&]() {
1051 auto bh1 = detail::BroadcastShape(x->shape, y->shape);
1052 Array<PrimExpr> common_shape1(bh1.common_shape.begin(), bh1.common_shape.end());
1053 auto bh2 = detail::BroadcastShape(condition->shape, common_shape1);
1055 return common_shape2;
1058 auto oshape = get_out_shape();
1060 auto c_bh = detail::BroadcastShape(condition->shape, oshape);
1061 auto x_bh = detail::BroadcastShape(x->shape, oshape);
1062 auto y_bh = detail::BroadcastShape(y->shape, oshape);
1065 auto c = condition(InputIndexFromBroadcast(ovars, condition, c_bh.vars1, c_bh.all_vars));
1066 auto true_val = x(InputIndexFromBroadcast(ovars, x, x_bh.vars1, x_bh.all_vars));
1067 auto false_val = y(InputIndexFromBroadcast(ovars, y, y_bh.vars1, y_bh.all_vars));
1071 return compute(oshape, select, name, tag);
1088 int ndim =
static_cast<int>(x->shape.size());
1089 ICHECK(-ndim - 1 <= axis && axis <= ndim)
1090 <<
"repeat only accepts `axis` in [-data.ndim - 1, data.ndim]" 1091 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
1092 ICHECK(repeats >= 1) <<
"repeat only accepts `repeats >= 1`" 1093 <<
", but got repeats = " << repeats;
1099 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1102 new_shape.
push_back(repeats * x->shape[axis]);
1103 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
1111 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1115 for (
size_t i = axis + 1; i < indices.
size(); ++i) {
1135 size_t ndim = x->shape.size();
1136 size_t rdim = reps.
size();
1137 size_t tdim = (ndim > rdim) ? ndim : rdim;
1142 for (
size_t i = 0; i < ndim; ++i) {
1146 }
else if (ndim > rdim) {
1147 for (
size_t i = 0; i < ndim; ++i) data_shape.
push_back(x->shape[i]);
1148 for (
size_t i = 0; i < (ndim - rdim); ++i) reps_shape.
push_back(1);
1149 for (
size_t i = 0; i < rdim; ++i) reps_shape.
push_back(reps[i]);
1151 for (
size_t i = 0; i < (rdim - ndim); ++i) data_shape.
push_back(1);
1152 for (
size_t i = 0; i < ndim; ++i) data_shape.
push_back(x->shape[i]);
1153 for (
size_t i = 0; i < rdim; ++i) reps_shape.
push_back(reps[i]);
1155 for (
size_t i = 0; i < tdim; ++i) new_shape.
push_back(data_shape[i] * reps_shape[i]);
1157 if (is_empty_shape(new_shape)) {
1166 for (
size_t i = 0; i < ndim; ++i) idx.
push_back(
indexmod(indices[i], x->shape[i]));
1168 for (
size_t i = 0; i < ndim; ++i)
1189 std::string name =
"T_tile", std::string tag =
kBroadcast) {
1190 size_t ndim = x->shape.size();
1191 if (is_empty_shape(new_shape)) {
1200 for (
size_t i = 0; i < ndim; ++i) {
1204 for (
size_t i = 0; i < ndim; ++i) {
1226 std::string name =
"T_gather", std::string tag =
kInjective) {
1227 size_t ndim_d = data->shape.size();
1228 size_t ndim_i = indices->shape.size();
1229 ICHECK_GE(ndim_d, 1) <<
"Cannot gather from a scalar.";
1230 ICHECK_EQ(ndim_d, ndim_i);
1235 ICHECK_LT(axis, ndim_d);
1237 size_t indices_dim_i =
static_cast<size_t>(GetConstInt(indices->shape[axis]));
1238 ICHECK_GE(indices_dim_i, 1);
1240 ICHECK(indices->dtype.is_int());
1243 for (
size_t i = 0; i < ndim_i; ++i) {
1251 for (
size_t i = 0; i < ndim_i; ++i) {
1252 indices_position.
push_back(out_index[i]);
1255 for (
size_t i = 0; i < ndim_i; ++i) {
1256 if (i == static_cast<size_t>(axis)) {
1257 real_indices.
push_back(indices(indices_position));
1259 real_indices.
push_back(indices_position[i]);
1262 return data(real_indices);
1279 std::string name =
"T_gather_nd", std::string tag =
kInjective) {
1280 size_t ndim_d = data->shape.size();
1281 size_t ndim_i = indices->shape.size();
1282 ICHECK_GE(ndim_i, 1) <<
"indices tensor must have at least 1 dimensions";
1283 size_t indices_dim0 =
static_cast<size_t>(GetConstInt(indices->shape[0]));
1284 ICHECK_LE(indices_dim0, ndim_d) <<
"dim 0 of indices tensor must be no more " 1285 <<
"than dimensions of data tensor";
1287 for (
size_t i = 1; i < ndim_i; ++i) {
1290 for (
size_t i = indices_dim0 + batch_dims; i < ndim_d; ++i) {
1298 for (
size_t i = 0; i < ndim_i - 1; ++i) {
1299 indices_position.
push_back(out_index[i]);
1302 for (
size_t i = 0; i < static_cast<size_t>(batch_dims); ++i) {
1305 for (
size_t i = 0; i < indices_dim0; ++i) {
1307 if (indices->dtype.is_int()) {
1308 real_indices.
push_back(indices(indices_position));
1313 if (real_indices.
size() == ndim_d) {
1314 return data(real_indices);
1316 for (
size_t i = ndim_i - 1; i < out_index.
size(); ++i) {
1319 return data(real_indices);
1340 bool trans_a =
false,
bool trans_b =
false,
1341 std::string name =
"T_matmul", std::string tag =
kMatMul) {
1345 return tvm::sum((trans_a ? A[k][i] : A[i][k]) * (trans_b ? B[j][k] : B[k][j]), {k});
1362 std::string name =
"T_tensordot", std::string tag =
kMatMul) {
1363 ICHECK_GE(A->shape.size(), axes);
1364 ICHECK_GE(B->shape.size(), axes);
1366 Array<PrimExpr> output_shape(A->shape.begin(), A->shape.end() + (-axes));
1367 for (
auto it = B->shape.begin() + axes; it != B->shape.end(); ++it) output_shape.push_back(*it);
1370 for (
int i = 0; i < axes; ++i)
1373 auto func = [&A, &B, &iter_vars, axes](
const Array<Var>& input_indices) {
1375 input_indices.begin() + (A->shape.size() - axes));
1376 for (
auto& v : iter_vars) A_indices.
push_back(v);
1379 for (
auto& v : iter_vars) B_indices.
push_back(v);
1381 auto it = input_indices.begin() + (A->shape.size() - axes);
1382 for (; it != input_indices.end(); ++it) B_indices.
push_back(*it);
1385 if (iter_vars.empty())
1386 return A(A_indices) * B(B_indices);
1388 return sum(A(A_indices) * B(B_indices), iter_vars);
1391 return compute(output_shape, func, name, tag);
1409 ICHECK_EQ(A_axes.
size(), B_axes.
size());
1411 auto A_axes_val = GetConstIntValues(A_axes,
"A_axes");
1412 auto B_axes_val = GetConstIntValues(B_axes,
"B_axes");
1415 for (
unsigned i = 0; i < A->shape.size(); ++i)
1416 if (std::find(A_axes_val.begin(), A_axes_val.end(), i) == A_axes_val.end())
1418 for (
unsigned i = 0; i < B->shape.size(); ++i)
1419 if (std::find(B_axes_val.begin(), B_axes_val.end(), i) == B_axes_val.end())
1423 for (
unsigned i = 0; i < B_axes_val.size(); ++i)
1426 auto func = [&A, &B, &iter_vars, A_axes_val, B_axes_val](
const Array<Var>& input_indices) {
1429 for (
unsigned i = 0; i < A->shape.size(); ++i) {
1430 auto axes_pos = std::find(A_axes_val.begin(), A_axes_val.end(), i);
1431 if (axes_pos == A_axes_val.end())
1432 A_indices.
push_back(input_indices[idx_input++]);
1434 A_indices.
push_back(iter_vars[axes_pos - A_axes_val.begin()]);
1438 for (
unsigned i = 0; i < B->shape.size(); ++i) {
1439 auto axes_pos = std::find(B_axes_val.begin(), B_axes_val.end(), i);
1440 if (axes_pos == B_axes_val.end())
1441 B_indices.
push_back(input_indices[idx_input++]);
1443 B_indices.
push_back(iter_vars[axes_pos - B_axes_val.begin()]);
1445 return sum(A(A_indices) * B(B_indices), iter_vars);
1447 return compute(output_shape, func, name, tag);
1457 [&](
const Array<Var>& indices) {
return tvm::cast(dtype, start + step * indices[0]); }, name,
1472 std::string name =
"T_meshgrid", std::string tag =
kInjective) {
1473 const bool cartesian_indexing = indexing ==
"xy" && inputs.
size() >= 2;
1475 for (
size_t i = 0; i < inputs.
size(); ++i) {
1476 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1477 out_shape.
push_back(inputs[src_index]->
shape.size() == 0 ? 1 : inputs[src_index]->shape[0]);
1480 for (
size_t i = 0; i < inputs.
size(); ++i) {
1484 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1486 return inputs[i](real_indices);
1503 const std::string& dst_layout,
1504 const std::string name =
"T_layout_trans",
1506 Layout src_layout_struct(src_layout);
1507 Layout dst_layout_struct(dst_layout);
1509 if (src_layout_struct.
Equals(dst_layout_struct)) {
1513 ICHECK(src_layout_struct.
defined() && dst_layout_struct.
defined())
1514 <<
"cannot convert from/to undefined layout";
1517 ICHECK(layout_converter.defined())
1518 <<
"cannot convert from " << src_layout <<
" to " << dst_layout;
1520 Array<PrimExpr> dst_shape = layout_converter.ForwardShape(src->shape);
1526 Array<PrimExpr> src_indices = layout_converter.BackwardIndex(dst_indices_expr);
1527 return src(src_indices);
1534 std::vector<std::string>* axes) {
1536 std::string axis =
"";
1537 for (
char c : std::string(layout)) {
1538 if (c >=
'A' && c <=
'z') {
1544 }
else if (c >=
'0' && c <=
'9') {
1545 factor = factor * 10 + c -
'0';
1546 if (!axis.empty()) {
1547 axes->push_back(axis);
1551 LOG(FATAL) <<
"Invalid layout " << layout;
1554 if (!axis.empty()) {
1555 axes->push_back(axis);
1570 const String& dst_layout,
1571 const String name =
"T_auto_scheduler_layout_trans",
1574 std::vector<std::string> src_axes;
1576 std::vector<std::string> dst_axes;
1585 for (
const std::string& src_axis : src_axes) {
1587 CHECK_EQ(dst_indices_expr.size(), dst_axes.size());
1588 for (
size_t i = 0; i < dst_axes.size(); ++i) {
1589 if (dst_axes[i] == src_axis) {
1590 src_index = src_index * dst_shape[i] + dst_indices_expr[i];
1595 return src(src_indices);
1610 int ndim =
static_cast<int>(src->shape.size());
1615 auto idx = indices[0];
1617 for (
int i = 0; i < ndim; ++i) {
1634 const std::string& name =
"ndarray_size",
1636 int ndim =
static_cast<int>(src->shape.size());
1642 for (
int i = 0; i < ndim; ++i) {
1643 ret *= src->shape[i];
1665 int depth,
int axis,
const DataType& dtype,
1667 const std::string name =
"T_one_hot",
const std::string tag =
kInjective) {
1668 int true_axis = (axis == -1) ? indices->shape.size() : axis;
1669 if (oshape.size() == 0) {
1670 int ndim = indices->shape.size() + 1;
1671 int indices_index = 0;
1672 for (
int i = 0; i < ndim; i++) {
1673 if (i == true_axis) {
1674 oshape.push_back(
Integer(depth));
1676 oshape.push_back(indices->shape[indices_index++]);
1687 for (
size_t i = 0; i < iter_vars.
size(); i++) {
1688 if (static_cast<int>(i) == true_axis) {
1692 indices_indices.
push_back(iter_vars[i]);
1695 auto idx = iter_vars[true_axis];
1696 return tir::Select(indices(indices_indices) == idx, on_value_cast, off_value_cast);
1713 const std::string name =
"T_sparse_to_dense",
1715 ICHECK(sparse_indices->dtype.is_int()) <<
"sparse_indices only accepts integer values";
1716 ICHECK_LE(sparse_indices->shape.size(), 3)
1717 <<
"sparse_indices tensor should be 0D, 1D, or 2D only";
1718 ICHECK_LE(sparse_values->shape.size(), 2) <<
"sparse_values tensor should be 0D or 1D only";
1720 const auto rank_sparse_indices =
static_cast<int>(sparse_indices->shape.size());
1722 for (
auto l : output_shape) {
1729 if (0 == rank_sparse_indices) {
1730 ret =
if_then_else(indices[0] == sparse_indices[0], sparse_values[0], ret);
1731 }
else if (1 == rank_sparse_indices) {
1732 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
1733 ret =
if_then_else(indices[0] == sparse_indices[j], sparse_values[j], ret);
1736 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
1738 for (
int k = 0; k < GetConstInt(sparse_indices->shape[1]); k++) {
1739 PrimExpr comparision = indices[k] == sparse_indices[j][k];
1740 aggregate_condition = 0 == k ? comparision : aggregate_condition && comparision;
1742 ret =
if_then_else(aggregate_condition, sparse_values[j], ret);
1763 bool super_diag_right_align,
bool sub_diag_right_align,
1764 const std::string name =
"T_matrix_set_diag",
1766 size_t ndim = input->shape.size() - 1;
1768 bool only_one_diagonal = k1 == k2;
1773 auto get_diag = [&]() {
1774 Array<PrimExpr> diagonal_indices;
1775 PrimExpr k, offset = 0;
1776 for (size_t i = 0; i < ndim - 1; i++) {
1777 diagonal_indices.push_back(iter_vars[i]);
1779 if (only_one_diagonal) {
1783 k = iter_vars[ndim] - iter_vars[ndim - 1];
1784 diagonal_indices.push_back(k2 - k);
1787 auto get_offset = [&](PrimExpr M, PrimExpr N) {
1789 return diagonal->shape[diagonal->shape.size() - 1] - if_then_else(M < N, M, N);
1791 offset = if_then_else(
1793 super_diag_right_align ? get_offset(input->shape[ndim] - k, input->shape[ndim - 1])
1795 sub_diag_right_align ? get_offset(input->shape[ndim], input->shape[ndim - 1] + k)
1798 diagonal_indices.push_back(if_then_else(k >= 0, iter_vars[ndim - 1], iter_vars[ndim]) +
1800 return diagonal(diagonal_indices);
1804 get_diag(), input(iter_vars)),
1819 const std::string name =
"advanced_index",
1824 std::vector<int64_t> flatten_shape_lens;
1825 int64_t num_picked_elems = 1;
1826 bool has_dyn_shape =
false;
1828 if (indices.
size() == 1) {
1829 broadcast_shape = indices[0]->shape;
1832 for (
const auto& index : indices) {
1833 int64_t flatten_len = 1;
1834 for (
const auto& dim : index->shape) {
1837 broadcast_shape = index->shape;
1838 has_dyn_shape =
true;
1841 flatten_len *= axis_len->
value;
1843 if (has_dyn_shape)
break;
1844 flatten_shape_lens.push_back(flatten_len);
1845 if (flatten_len > num_picked_elems) {
1846 num_picked_elems = flatten_len;
1847 broadcast_shape = index->shape;
1852 for (
size_t i = 0; i < indices.size(); ++i) {
1853 if (!has_dyn_shape && flatten_shape_lens[i] < num_picked_elems) {
1861 for (
const auto& dim : broadcast_shape) {
1864 for (
size_t i = indices.
size(); i < data->shape.size(); ++i) {
1872 for (
size_t i = 0; i < broadcast_shape.size(); ++i) {
1877 for (
size_t i = 0; i < bindices.
size(); ++i) {
1878 real_indices.
push_back(bindices[i](tensor_indices));
1880 for (
size_t i = broadcast_shape.size(); i < iter_var.
size(); ++i) {
1884 return data(real_indices);
1891 #endif // TVM_TOPI_TRANSFORM_H_ Managed reference to LayoutNode.
Definition: data_layout.h:123
PrimExpr min(PrimExpr a, PrimExpr b, Span span=Span())
take minimum of two values
bool Equals(const Layout &rhs) const
Whether the two layouts are equal.
Definition: data_layout.h:276
Tensor strided_slice_with_axes(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, std::string slice_mode="end", std::string name="T_strided_slice_with_axes", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:683
Tensor sparse_to_dense(const Tensor &sparse_indices, const Array< PrimExpr > &output_shape, const Tensor &sparse_values, const PrimExpr &default_value, const std::string name="T_sparse_to_dense", const std::string tag=kInjective)
Get a dense tensor.
Definition: transform.h:1711
PrimExpr indexmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder floor(a / b) where a and b are non-negative.
Array< PrimExpr > StridedSliceOutputShape(const Array< PrimExpr > &ishape, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, const std::string &slice_mode)
Calcluate the output shape of strided_slice, the entry point for Relay type relation.
Definition: transform.h:655
PrimExpr make_const(DataType t, ValueType value, Span span=Span())
Make a const value with certain data type.
Definition: op.h:1109
Performance counters for profiling via the PAPI library.
Definition: analyzer.h:36
Tensor expression language DSL.
Definition: autodiff.h:35
Tensor tensordot(const Tensor &A, const tvm::te::Tensor &B, int axes=2, std::string name="T_tensordot", std::string tag=kMatMul)
A generalization of matrix multiplication to tensors.
Definition: transform.h:1361
Tensor dynamic_strided_slice(const Tensor &x, const Array< PrimExpr > &begin, const Array< PrimExpr > &end, const Array< PrimExpr > &strides, std::string name="T_dynamic_strided_slice", std::string tag=kInjective)
strided_slice of a tensor where begin/end/stride can be mixed static and dynamic
Definition: transform.h:566
PrimExpr ceil(PrimExpr x, Span span=Span())
Calculate ceil(x)
a named variable in TIR
Definition: var.h:88
Tensor where(const Tensor &condition, const Tensor &x, const Tensor &y, std::string name="T_where", std::string tag=kBroadcast)
Return the elements, either from x or y, depending on the condition.
Definition: transform.h:1046
Tensor one_hot(const Tensor &indices, const PrimExpr on_value, const PrimExpr off_value, int depth, int axis, const DataType &dtype, Array< PrimExpr > oshape=Array< PrimExpr >(), const std::string name="T_one_hot", const std::string tag=kInjective)
Returns a one-hot tensor where the locations repsented by indices take value on_value, other locations take value off_value.
Definition: transform.h:1664
PrimExpr if_then_else(PrimExpr cond, PrimExpr true_value, PrimExpr false_value, Span span=Span())
Conditional expression.
Tensor matrix_set_diag(const Tensor &input, const Tensor &diagonal, int k1, int k2, bool super_diag_right_align, bool sub_diag_right_align, const std::string name="T_matrix_set_diag", const std::string tag=kInjective)
Returns a tensor with the diagonal of input tensor replaced with the provided diagonals.
Definition: transform.h:1762
constexpr auto kMatMul
Definition: tags.h:37
constexpr auto kInjective
Definition: tags.h:33
PrimExpr Simplify(const PrimExpr &expr, int steps=2)
Simplify expr.
Utility functions for strided_slice op.
Tensor unravel_index(const Tensor &x, const Tensor &shape, std::string name="T_unravel", std::string tag=kInjective)
Converts a flat index or array of flat indices into a tuple of coordinate arrays. ...
Definition: transform.h:273
Array< Tensor > split(const Tensor &x, Array< PrimExpr > split_indices, int axis, std::string name="T_split", std::string tag=kInjective)
Split a tensor into multiple sub-tensors.
Definition: transform.h:489
void parse_auto_scheduler_layout(const String &layout, Array< PrimExpr > *shape, std::vector< std::string > *axes)
Utility function for auto_scheduler_layout_transform.
Definition: transform.h:1533
Tensor gather(const Tensor &data, int axis, const Tensor &indices, std::string name="T_gather", std::string tag=kInjective)
Gather values along given axis from given indices.
Definition: transform.h:1225
Tensor dyn_tile(const Tensor &x, Array< PrimExpr > new_shape, size_t rdim, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1188
Tensor layout_transform(const Tensor &src, const std::string &src_layout, const std::string &dst_layout, const std::string name="T_layout_trans", const std::string tag=kInjective)
Transform the layout according to src_layout and dst_layout.
Definition: transform.h:1502
Tensor auto_scheduler_layout_transform(const Tensor &src, const String &src_layout, const String &dst_layout, const String name="T_auto_scheduler_layout_trans", const String tag=kInjective)
Transform the auto-scheduler generated layout according to src_layout and dst_layout.
Definition: transform.h:1569
PrimExpr cast(const DataType &t, PrimExpr value, Span span=Span())
cast value to type.
Tensor squeeze(const Tensor &x, Array< Integer > axis, bool atleast1d=false, std::string name="T_squeeze", std::string tag=kInjective)
Remove size 1 dimensions from the shape of a tensor. The removed dimensions must have a constant size...
Definition: transform.h:321
void Set(int64_t i, T value)
set i-th element of the array.
Definition: array.h:567
Constant integer literals in the program.
Definition: expr.h:233
void push_back(const T &item)
push a new item to the back of the list
Definition: array.h:436
Tensor expand_dims(const Tensor &x, int axis, int num_newaxis=1, std::string name="T_expand_dims", std::string tag=kBroadcast)
Creates an operation to insert new dimensions of length 1.
Definition: transform.h:62
Tensor tile(const Tensor &x, Array< Integer > reps, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1133
Tensor sum(const Tensor &data, const Array< Integer > &axis, bool keepdims=false, bool atleast1d=false)
Creates an operation that sums array elements over a given axis.
Definition: reduction.h:326
Utility functions for handling constants in TVM expressions.
constexpr auto kBroadcast
Definition: tags.h:36
Range constainer.
Definition: expr.h:449
Tensor arange(const PrimExpr &start, const PrimExpr &stop, const PrimExpr &step, DataType dtype, std::string name="T_arange", std::string tag=kInjective)
Definition: transform.h:1450
size_t size() const
Definition: array.h:399
Runtime primitive data type.
Definition: data_type.h:41
bool defined() const
Definition: object.h:537
Tensor stack(const Array< Tensor > &inputs, int axis=0, std::string name="T_stack", std::string tag=kInjective)
Join a sequence of tensors along a new axis.
Definition: transform.h:443
Utility functions for handling tensor.
static DataType Float(int bits, int lanes=1)
Construct an float type.
Definition: data_type.h:168
PrimExpr sum(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
sum of of source expression over axis
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:270
PrimExpr indexdiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b) where a and b are non-negative.
Tensor concatenate(const Array< Tensor > &inputs, int axis=0, std::string name="T_concat", std::string tag=kInjective)
Join a sequence of tensors along an existing axis.
Definition: transform.h:384
Tensor take(const Tensor &a, const Tensor &indices, int batch_dims, std::string mode="clip", std::string name="T_take", std::string tag=kInjective)
Take elements from an flattened input array when axis is None.
Definition: transform.h:812
Managed reference class to IntImmNode.
Definition: expr.h:262
PrimExpr max(PrimExpr a, PrimExpr b, Span span=Span())
take maximum of two values
int64_t value
the Internal value.
Definition: expr.h:236
Reference to string objects.
Definition: string.h:129
Tensor shape(const Tensor &src, DataType dtype, const std::string name="T_shape", const std::string tag=kInjective)
Get the shape of input tensor.
Definition: transform.h:1608
Array< Tensor > meshgrid(const Array< Tensor > &inputs, const std::string &indexing, std::string name="T_meshgrid", std::string tag=kInjective)
Produce grids by expanding input over dimensions defined by other inputs.
Definition: transform.h:1471
IterVar reduce_axis(Range dom, std::string name="rv")
Create a new IterVar for reduction operations.
PrimExpr truncmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder of truncdiv
iterator end() const
Definition: array.h:369
Tensor structure representing a possible input, or intermediate computation result.
Definition: tensor.h:102
iterator begin() const
Definition: array.h:366
Operation node can generate one or multiple Tensors.
Managed reference to SelectNode.
Definition: expr.h:589
Bijective function mapping for data layout transformation. Given two Layout, BijectiveLayout build an...
Definition: data_layout.h:324
Tensor transpose(const Tensor &x, Array< Integer > axes, std::string name="T_transpose", std::string tag=kInjective)
Permute the dimensions of an array.
Definition: transform.h:111
Tensor ndarray_size(const Tensor &src, const DataType &dtype, const std::string &name="ndarray_size", const std::string &tag=kInjective)
Get the size of input tensor.
Definition: transform.h:1633
Tensor sequence_mask(const Tensor &data, const Tensor &valid_length, double mask_value, int axis, std::string name="T_sequence_mask", std::string tag=kInjective)
Mask the out-of-boundary elements of each sequence.
Definition: transform.h:860
PrimExpr ret(PrimExpr value, Span span=Span())
Return the value.
Tensor adv_index(const Tensor &data, const Array< Tensor > &indices, const std::string name="advanced_index", const std::string tag=kInjective)
Numpy style advanced indexing with tensor.
Definition: transform.h:1818
Tensor compute(Array< PrimExpr > shape, FCompute fcompute, std::string name="tensor", std::string tag="", Map< String, ObjectRef > attrs={})
Construct a new tensor by computing over shape, using the computation rule: result_tensor[axis] = fco...
Tensor reverse_sequence(const Tensor &x, const Tensor &seq_lengths, int seq_axis=1, int batch_axis=0, std::string name="T_reverse_sequence", std::string tag=kInjective)
Reverse the tensor for variable length slices. Input is first sliced along batch axis and then elemen...
Definition: transform.h:170
Tensor cast(const Tensor &x, DataType type, std::string name="T_cast", std::string tag=kElementWise)
Cast each element of x to the given type. If expr is scalar and type is a corresponding vector type...
Definition: elemwise.h:280
Tensor reshape(const Tensor &x, Array< PrimExpr > newshape, std::string name="T_reshape", std::string tag=kInjective)
Reshape a tensor.
Definition: transform.h:235
tvm::te::Tensor broadcast_to(const tvm::te::Tensor &t, const tvm::Array< tvm::PrimExpr > &output_shape, std::string name="T_broadcast_to", std::string tag=kBroadcast)
Creates an operation that broadcasts a tensor into a compatible shape according to numpy's rules...
Definition: broadcast.h:48
Tensor repeat(const Tensor &x, int repeats, int axis, std::string name="T_repeat", std::string tag=kBroadcast)
Creates an operation to repeat elements of an array.
Definition: transform.h:1086
Tensor strided_slice(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, std::string slice_mode="end", std::string name="T_strided_slice", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:729
Broadcast op constructions.
Reference to PrimExprNode.
Definition: expr.h:109
Layout expression to describe the data organization of a tensor. And BijectiveLayout to mapping two d...
const ObjectType * as() const
Try to downcast the internal Object to a raw pointer of a corresponding type.
Definition: object.h:858
Tensor gather_nd(const Tensor &data, const Tensor &indices, int batch_dims=0, std::string name="T_gather_nd", std::string tag=kInjective)
Gather elements from a n-dimension array.
Definition: transform.h:1278
Array< Tensor > split_sections(const Tensor &x, int num_sections, int axis, std::string name="T_split_sections", std::string tag=kInjective)
Split a tensor into a number of sub-tensors.
Definition: transform.h:769
Index ravel and unraval operations.
Analyzer that contains bunch of sub-analyzers.
Definition: analyzer.h:387
tvm::te::Tensor matmul(const tvm::te::Tensor &A, const tvm::te::Tensor &B, bool trans_a=false, bool trans_b=false, std::string name="T_matmul", std::string tag=kMatMul)
Creates an operation that calculates a matrix multiplication (row-major notation): A(i...
Definition: transform.h:1339
static DataType Int(int bits, int lanes=1)
Construct an int type.
Definition: data_type.h:154
Container of constant int that adds more constructors.
Definition: expr.h:356