Note
This tutorial can be used interactively with Google Colab! You can also click here to run the Jupyter notebook locally.
Compile CoreML Models
Author: Joshua Z. Zhang, Kazutaka Morita, Zhao Wu
This article is an introductory tutorial to deploy CoreML models with Relay.
To begin, we must install coremltools:
pip install coremltools
or please refer to official site https://github.com/apple/coremltools
import tvm
from tvm import te
import tvm.relay as relay
from tvm.contrib.download import download_testdata
import coremltools as cm
import numpy as np
from PIL import Image
Load pretrained CoreML model
We will download and load a pretrained mobilenet classification network provided by apple in this example
model_url = "https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel"
model_file = "mobilenet.mlmodel"
model_path = download_testdata(model_url, model_file, module="coreml")
# Now you have mobilenet.mlmodel on disk
mlmodel = cm.models.MLModel(model_path)
Load a test image
A single cat dominates the examples!
img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true"
img_path = download_testdata(img_url, "cat.png", module="data")
img = Image.open(img_path).resize((224, 224))
# Mobilenet.mlmodel's input is BGR format
img_bgr = np.array(img)[:, :, ::-1]
x = np.transpose(img_bgr, (2, 0, 1))[np.newaxis, :]
Compile the model on Relay
We should be familiar with the process right now.
target = "llvm"
shape_dict = {"image": x.shape}
# Parse CoreML model and convert into Relay computation graph
mod, params = relay.frontend.from_coreml(mlmodel, shape_dict)
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target, params=params)
Execute on TVM
The process is no different from other example
from tvm.contrib import graph_executor
dev = tvm.cpu(0)
dtype = "float32"
m = graph_executor.GraphModule(lib["default"](dev))
# set inputs
m.set_input("image", tvm.nd.array(x.astype(dtype)))
# execute
m.run()
# get outputs
tvm_output = m.get_output(0)
top1 = np.argmax(tvm_output.numpy()[0])
Look up synset name
Look up prediction top 1 index in 1000 class synset.
synset_url = "".join(
[
"https://gist.githubusercontent.com/zhreshold/",
"4d0b62f3d01426887599d4f7ede23ee5/raw/",
"596b27d23537e5a1b5751d2b0481ef172f58b539/",
"imagenet1000_clsid_to_human.txt",
]
)
synset_name = "imagenet1000_clsid_to_human.txt"
synset_path = download_testdata(synset_url, synset_name, module="data")
with open(synset_path) as f:
synset = eval(f.read())
# You should see the following result: Top-1 id 282 class name tiger cat
print("Top-1 id", top1, "class name", synset[top1])
Top-1 id 282 class name tiger cat