How to Use TVM Pass Infra

Author: Zhi Chen

As the number of optimization passes increases in Relay/tir, it becomes intractable to execute them and maintain their dependencies manually. Therefore, we have introduced an infrastructure to manage the optimization passes and make it applicable to different layers of the IR in the TVM stack.

The optimizations of a Relay/tir program could be applied at various granularity, namely function-level and module-level using tvm.relay.transform.FunctionPass/ tvm.tir.transform.PrimFuncPass and tvm.transform.ModulePass respectively. Or users can rely on tvm.transform.Sequential to apply a sequence of passes on a Relay/tir program where the dependencies between passes can be resolved by the pass infra. For more details about each type of these passes, please refer to the Pass Infrastructure

This tutorial mainly demonstrates how developers can use the pass infra to perform a certain optimization and create an optimization pipeline for a Relay program. The same approach can be used for tir as well.

import numpy as np
import tvm
from tvm import te
import tvm.relay as relay

Create An Example Relay Program

First of all, we create a simple Relay program for the tutorial. This program will be used by various optimizations of the examples in this tutorial. Similarly, users can write a tir primitive function and apply the tir passes.

def example():
    shape = (1, 64, 54, 54)
    c_data = np.empty(shape).astype("float32")
    c = relay.const(c_data)
    weight = relay.var("weight", shape=(64, 64, 3, 3))
    x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
    conv = relay.nn.conv2d(x, weight)
    y = relay.add(c, c)
    y = relay.multiply(y, relay.const(2, "float32"))
    y = relay.add(conv, y)
    z = relay.add(y, c)
    z1 = relay.add(y, c)
    z2 = relay.add(z, z1)
    return relay.Function([x, weight], z2)

Optimize the Program

Now we would like to optimize the program. Relay features a host of optimizations. We will select some of them to apply on this example program.

There are multiple ways to optimize a Relay program. Below we will provide examples for each of them.

Manually Apply Optimization Passes

# Let's first create a relay Module which contains one or multiple Relay
# functions for optimization.
f = example()
mod = tvm.IRModule.from_expr(f)

# Now we can apply constant folding on the module.
# fold_const here is a callback that doesn't take any parameters.
fold_const = relay.transform.FoldConstant()
# Then, we can invoke the pass on the given module. Note that the constant
# folding pass works at the function-level. That being said, each function in
# the module will be applied with the optimization. Users don't need to iterate
# through individual functions manually to apply this pass.
mod = fold_const(mod)
# We can see from the updated program that the constants are folded.
print(mod)
/workspace/gallery/how_to/extend_tvm/use_pass_infra.py:59: RuntimeWarning: overflow encountered in cast
  c_data = np.empty(shape).astype("float32")
/workspace/gallery/how_to/extend_tvm/use_pass_infra.py:59: RuntimeWarning: invalid value encountered in cast
  c_data = np.empty(shape).astype("float32")
def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %3 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
}

More optimizations can be applied in the similar manner. For instance, we can eliminate the common expressions that used by z and z1.

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
}

Some optimizations, such as fusion, are parametric as well. For example, opt level 0 will not allow operators to be fused together. Users can pass the fuse_opt_level to enable this.

mod = relay.transform.FuseOps(fuse_opt_level=0)(mod)

# We can observe that the optimized module contains functions that only have
# a signle primitive op.
print(mod)
def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = fn (%p03: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %p12: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    nn.conv2d(%p03, %p12, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 56, 56), float32], Tensor[(64, 64, 3, 3), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %1 = %0(%x, %weight) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = fn (%p02: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, %p11: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    add(%p02, %p11) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 54, 54), float32], Tensor[(1, 64, 54, 54), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %3 = %2(%1, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %4 = fn (%p01: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, %p1: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    add(%p01, %p1) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 54, 54), float32], Tensor[(1, 64, 54, 54), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %5 = %4(%3, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %6 = fn (%p0: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    add(%p0, %p0) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 54, 54), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %6(%5) /* ty=Tensor[(1, 64, 54, 54), float32] */
}

Use Sequential to Apply a Sequence of Passes

Applying passes as above is actually tedious and it may require users to have better understanding about the dependencies between them. For example, fusion currently doesn’t work well on let bindings. Therefore, we would not be able to fuse operators that were fusable if relay.transform.ToANormalForm() is applied before fusion, as this pass generates let bindings for each expression to canonicalize a Relay program.

Relay, hence, provides tvm.transform.Sequential to alleviate developers from handling these issues explicitly by specifying the required passes of each pass and packing them as a whole to execute. For example, the same passes can now be applied using the sequential style as the following. tvm.transform.Sequential is similar to torch.nn.sequential and mxnet.gluon.block. For example, torch.nn.sequential is used to contain a sequence of PyTorch Modules that will be added to build a network. It focuses on the network layers. Instead, the tvm.transform.Sequential in our pass infra works on the optimizing pass.

# Now let's execute some passes through :py:class:`tvm.transform.Sequential`
f = example()
mod = tvm.IRModule.from_expr(f)
# Glob the interested passes.
seq = tvm.transform.Sequential(
    [
        relay.transform.FoldConstant(),
        relay.transform.EliminateCommonSubexpr(),
        relay.transform.FuseOps(fuse_opt_level=2),
    ]
)
mod1 = seq(mod)
print(mod1)
def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %4 = fn (%p0: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %p1: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %p2: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, %p3: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    %0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %3 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 56, 56), float32], Tensor[(64, 64, 3, 3), float32], Tensor[(1, 64, 54, 54), float32], Tensor[(1, 64, 54, 54), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %4(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}

From the transformed Relay program, we can see that there are still two identical addition operations. This is because EliminateCommonSubexpr was not actually performed. The reason is because only the passes that have optimization level less or equal to 2 will be executed by default under tvm.transform.Sequential. The pass infra, however, provides a configuration interface for users to customize the optimization level that they want to execute.

with tvm.transform.PassContext(opt_level=3):
    mod2 = seq(mod)
print(mod2)
def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %3 = fn (%p0: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %p1: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %p2: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, %p3: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    %0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 56, 56), float32], Tensor[(64, 64, 3, 3), float32], Tensor[(1, 64, 54, 54), float32], Tensor[(1, 64, 54, 54), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %3(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}

Now we can see that only one of the two identical additions is kept.

In addition, users can selectively disable some passes using the disabled_pass config, which is similar to the -fno-xxx option used the general purpose compilers, such as Clang and GCC. For example, we can disable EliminateCommonSubexpr as following. The printed module will again show two identical addition operations.

with tvm.transform.PassContext(opt_level=3, disabled_pass=["EliminateCommonSubexpr"]):
    mod3 = seq(mod)
print(mod3)
def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %4 = fn (%p0: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %p1: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %p2: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, %p3: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    %0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %3 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 56, 56), float32], Tensor[(64, 64, 3, 3), float32], Tensor[(1, 64, 54, 54), float32], Tensor[(1, 64, 54, 54), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %4(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}

Implement a Pass Using Python Decorator

The next example illustrates how we can orchestrate a customized optimization pipeline through the pass infra using Python decorators. This functionality greatly eases the implementation of passes. For example, users can simply define a decorated class to do function-level optimizations as the following example shows. transform_function wraps a class to replace all constants with a multiple of c. Later on, each function in a given module will be visited and each constant in the function will be replaced when we invoke the customized pass.

@relay.transform.function_pass(opt_level=1)
class CustomPipeline:
    """Simple test function to replace one argument to another."""

    def __init__(self, multiplier):
        self.multiplier = multiplier

    # This function can define a pass.
    def transform_function(self, func, mod, ctx):
        obj = self

        class ReplaceConstant(tvm.relay.ExprMutator):
            def visit_constant(self, c):
                return relay.multiply(obj.multiplier, c)

        return ReplaceConstant().visit(func)


f = example()
mod = tvm.IRModule.from_expr(f)
custom_pass = CustomPipeline(multiplier=relay.const(3, "float32"))
assert custom_pass.info.name == "CustomPipeline"
mod3 = custom_pass(mod)
print(mod3)
def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = multiply(3f /* ty=float32 */, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, %0) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = multiply(3f /* ty=float32 */, 2f /* ty=float32 */) /* ty=float32 */;
  %3 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %4 = multiply(%1, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %5 = add(%3, %4) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %6 = add(%5, %0) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %7 = add(%5, %0) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%6, %7) /* ty=Tensor[(1, 64, 54, 54), float32] */
}

Debug a Pass

TVM provides users a plug-and-play style debugging pass that print the IR after a certain pass is done through a special pass (PrintIR) to dump the IR of the whole module. A slightly modified version of the sequential pass example could be like the following to enable IR dumping for FoldConstant optimization.

By inserting the PrintIR pass after FoldConstant, the pass infra will dump out the module IR when FoldConstant is done. Users can plug in this pass after any pass they want to debug for viewing the optimization effect.

There is a more flexible debugging mechanism. One can implement a PassInstrument class to execute arbitrary code not only before and/or after each pass but also at entering/exiting PassContext. See Pass Instrument for more details.

Here we use :py::func`tvm.instrument.pass_instrument` decorator to implement a PassInsturment class printing IR before execution of each passes:

@tvm.instrument.pass_instrument
class PrintIR:
    """Print the name of the pass, the IR, only before passes execute."""

    def run_before_pass(self, mod, info):
        print("Running pass: {}", info)
        print(mod)


with tvm.transform.PassContext(opt_level=3, instruments=[PrintIR()]):
    with tvm.target.Target("llvm"):
        # Perform the optimizations.
        mod = seq(mod)
print(mod)

print("done")
Running pass: {} The meta data of the pass - pass name: sequential, opt_level: 0, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) {
  %0 = add(meta[relay.Constant][0], meta[relay.Constant][0]);
  %1 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]);
  %2 = multiply(%0, 2f);
  %3 = add(%1, %2);
  %4 = add(%3, meta[relay.Constant][0]);
  %5 = add(%3, meta[relay.Constant][0]);
  add(%4, %5)
}


Running pass: {} The meta data of the pass - pass name: FoldConstant, opt_level: 2, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) {
  %0 = add(meta[relay.Constant][0], meta[relay.Constant][0]);
  %1 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]);
  %2 = multiply(%0, 2f);
  %3 = add(%1, %2);
  %4 = add(%3, meta[relay.Constant][0]);
  %5 = add(%3, meta[relay.Constant][0]);
  add(%4, %5)
}


Running pass: {} The meta data of the pass - pass name: InferType, opt_level: 0, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]);
  %1 = add(%0, meta[relay.Constant][0]);
  %2 = add(%1, meta[relay.Constant][1]);
  %3 = add(%1, meta[relay.Constant][1]);
  add(%2, %3)
}


Running pass: {} The meta data of the pass - pass name: PrintIR, opt_level: 0, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %3 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
}


Running pass: {} The meta data of the pass - pass name: InferType, opt_level: 0, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %3 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
}


Running pass: {} The meta data of the pass - pass name: EliminateCommonSubexpr, opt_level: 3, required passes: [
InferType, ]

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %3 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %3) /* ty=Tensor[(1, 64, 54, 54), float32] */
}


Running pass: {} The meta data of the pass - pass name: InferType, opt_level: 0, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
}


Running pass: {} The meta data of the pass - pass name: InferType, opt_level: 0, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
}


Running pass: {} The meta data of the pass - pass name: FuseOps, opt_level: 0, required passes: [
InferType, ]

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %0 = nn.conv2d(%x, %weight, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %1 = add(%0, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  %2 = add(%1, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */;
  add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
}


Running pass: {} The meta data of the pass - pass name: InferType, opt_level: 0, required passes: []

def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %3 = fn (%p0: Tensor[(1, 64, 56, 56), float32], %p1: Tensor[(64, 64, 3, 3), float32], %p2: Tensor[(1, 64, 54, 54), float32], %p3: Tensor[(1, 64, 54, 54), float32], Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    %0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]);
    %1 = add(%0, %p2);
    %2 = add(%1, %p3);
    add(%2, %2)
  };
  %3(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */)
}


def @main(%x: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */) -> Tensor[(1, 64, 54, 54), float32] {
  %3 = fn (%p0: Tensor[(1, 64, 56, 56), float32] /* ty=Tensor[(1, 64, 56, 56), float32] */, %p1: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %p2: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, %p3: Tensor[(1, 64, 54, 54), float32] /* ty=Tensor[(1, 64, 54, 54), float32] */, Primitive=1) -> Tensor[(1, 64, 54, 54), float32] {
    %0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %1 = add(%0, %p2) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    %2 = add(%1, %p3) /* ty=Tensor[(1, 64, 54, 54), float32] */;
    add(%2, %2) /* ty=Tensor[(1, 64, 54, 54), float32] */
  } /* ty=fn (Tensor[(1, 64, 56, 56), float32], Tensor[(64, 64, 3, 3), float32], Tensor[(1, 64, 54, 54), float32], Tensor[(1, 64, 54, 54), float32]) -> Tensor[(1, 64, 54, 54), float32] */;
  %3(%x, %weight, meta[relay.Constant][0] /* ty=Tensor[(1, 64, 54, 54), float32] */, meta[relay.Constant][1] /* ty=Tensor[(1, 64, 54, 54), float32] */) /* ty=Tensor[(1, 64, 54, 54), float32] */
}


done

Summary

This tutorial has covered how we can write and invoke passes in TVM more conveniently using the pass infra. Different ways of invoking a pass are also discussed. Using tvm.transform.Sequential can largely help users to ease the work of handling multiple optimization passes and their dependencies. In addition, an example is provided to illustrate how we can debug a pass using the PrintIR and tracing.

Gallery generated by Sphinx-Gallery