Note
This tutorial can be used interactively with Google Colab! You can also click here to run the Jupyter notebook locally.
Use Relay Visualizer to Visualize Relay
Author: Chi-Wei Wang
Relay IR module can contain lots of operations. Although an individual operation is usually easy to understand, putting them together can cause a complicated, hard-to-read graph. Things can get even worse with optimization-passes coming into play.
This utility visualizes an IR module as nodes and edges. It defines a set of interfaces including parser, plotter(renderer), graph, node, and edges. A default parser is provided. Users can implement their own renderers to render the graph.
Here we use a renderer rendering graph in the text-form. It is a lightweight, AST-like visualizer, inspired by clang ast-dump. We will introduce how to implement customized parsers and renderers through interface classes. To install dependencies, run:
pip install graphviz
For more details, please refer to tvm.contrib.relay_viz
.
from typing import (
Dict,
Union,
Tuple,
List,
)
import tvm
from tvm import relay
from tvm.contrib import relay_viz
from tvm.contrib.relay_viz.interface import (
VizEdge,
VizNode,
VizParser,
)
from tvm.contrib.relay_viz.terminal import (
TermGraph,
TermPlotter,
TermVizParser,
)
Define a Relay IR Module with multiple GlobalVar
Let’s build an example Relay IR Module containing multiple GlobalVar
.
We define an add
function and call it in the main function.
data = relay.var("data")
bias = relay.var("bias")
add_op = relay.add(data, bias)
add_func = relay.Function([data, bias], add_op)
add_gvar = relay.GlobalVar("AddFunc")
input0 = relay.var("input0")
input1 = relay.var("input1")
input2 = relay.var("input2")
add_01 = relay.Call(add_gvar, [input0, input1])
add_012 = relay.Call(add_gvar, [input2, add_01])
main_func = relay.Function([input0, input1, input2], add_012)
main_gvar = relay.GlobalVar("main")
mod = tvm.IRModule({main_gvar: main_func, add_gvar: add_func})
Render the graph with Relay Visualizer on the terminal
The terminal can show a Relay IR module in text similar to clang AST-dump.
We should see main
and AddFunc
function. AddFunc
is called twice in the main
function.
viz = relay_viz.RelayVisualizer(mod)
viz.render()
@main([Var(input0), Var(input1), Var(input2)])
`--Call
|--GlobalVar AddFunc
|--Var(Input) name_hint: input2
`--Call
|--GlobalVar AddFunc
|--Var(Input) name_hint: input0
`--Var(Input) name_hint: input1
@AddFunc([Var(data), Var(bias)])
`--Call
|--add
|--Var(Input) name_hint: data
`--Var(Input) name_hint: bias
Customize Parser for Interested Relay Types
Sometimes we want to emphasize interested information, or parse things differently for a specific usage.
It is possible to provide customized parsers as long as it obeys the interface.
Here demonstrate how to customize parsers for relay.var
.
We need to implement abstract interface tvm.contrib.relay_viz.interface.VizParser
.
class YourAwesomeParser(VizParser):
def __init__(self):
self._delegate = TermVizParser()
def get_node_edges(
self,
node: relay.Expr,
relay_param: Dict[str, tvm.runtime.NDArray],
node_to_id: Dict[relay.Expr, str],
) -> Tuple[Union[VizNode, None], List[VizEdge]]:
if isinstance(node, relay.Var):
node = VizNode(node_to_id[node], "AwesomeVar", f"name_hint {node.name_hint}")
# no edge is introduced. So return an empty list.
return node, []
# delegate other types to the other parser.
return self._delegate.get_node_edges(node, relay_param, node_to_id)
Pass the parser and an interested renderer to visualizer. Here we just the terminal renderer.
viz = relay_viz.RelayVisualizer(mod, {}, TermPlotter(), YourAwesomeParser())
viz.render()
@main([Var(input0), Var(input1), Var(input2)])
`--Call
|--GlobalVar AddFunc
|--AwesomeVar name_hint input2
`--Call
|--GlobalVar AddFunc
|--AwesomeVar name_hint input0
`--AwesomeVar name_hint input1
@AddFunc([Var(data), Var(bias)])
`--Call
|--add
|--AwesomeVar name_hint data
`--AwesomeVar name_hint bias
Customization around Graph and Plotter
Besides parsers, we can also customize graph and renderers by implementing
abstract class tvm.contrib.relay_viz.interface.VizGraph
and
tvm.contrib.relay_viz.interface.Plotter
.
Here we override the TermGraph
defined in terminal.py
for easier demo.
We add a hook duplicating above AwesomeVar
, and make TermPlotter
use the new class.
class AwesomeGraph(TermGraph):
def node(self, viz_node):
# add the node first
super().node(viz_node)
# if it's AwesomeVar, duplicate it.
if viz_node.type_name == "AwesomeVar":
duplicated_id = f"duplicated_{viz_node.identity}"
duplicated_type = "double AwesomeVar"
super().node(VizNode(duplicated_id, duplicated_type, ""))
# connect the duplicated var to the original one
super().edge(VizEdge(duplicated_id, viz_node.identity))
# override TermPlotter to use `AwesomeGraph` instead
class AwesomePlotter(TermPlotter):
def create_graph(self, name):
self._name_to_graph[name] = AwesomeGraph(name)
return self._name_to_graph[name]
viz = relay_viz.RelayVisualizer(mod, {}, AwesomePlotter(), YourAwesomeParser())
viz.render()
@main([Var(input0), Var(input1), Var(input2)])
`--Call
|--GlobalVar AddFunc
|--AwesomeVar name_hint input2
| `--double AwesomeVar
`--Call
|--GlobalVar AddFunc
|--AwesomeVar name_hint input0
| `--double AwesomeVar
`--AwesomeVar name_hint input1
`--double AwesomeVar
@AddFunc([Var(data), Var(bias)])
`--Call
|--add
|--AwesomeVar name_hint data
| `--double AwesomeVar
`--AwesomeVar name_hint bias
`--double AwesomeVar
Summary
This tutorial demonstrates the usage of Relay Visualizer and customization.
The class tvm.contrib.relay_viz.RelayVisualizer
is composed of interfaces
defined in interface.py
.
It is aimed for quick look-then-fix iterations. The constructor arguments are intended to be simple, while the customization is still possible through a set of interface classes.