24 #ifndef TVM_TOPI_NN_LAYER_NORM_H_
25 #define TVM_TOPI_NN_LAYER_NORM_H_
53 std::string name =
"T_layer_norm", std::string tag =
kInjective) {
54 const auto& data_type = data->dtype;
55 const auto& gamma_type = gamma.
defined() ? gamma->dtype : data_type;
56 const auto& beta_type = beta.
defined() ? beta->dtype : data_type;
57 ICHECK(data_type == gamma_type && data_type == beta_type)
58 <<
"layer_norm: data, gamma and beta must have the same type";
60 <<
"layer_norm: only support float32 and float16 for now";
63 auto ndim = data->shape.size();
64 ICHECK_NE(ndim, 0) <<
"Cannot reduce a 0 dim Tensor";
65 auto real_axis =
GetRealAxis(
static_cast<int>(ndim), axis);
71 auto compute = [ndim, is_float16, &real_axis, &reduce_axes, &func,
77 for (
size_t i = 0; i < ndim; ++i) {
78 if (std::find(real_axis.begin(), real_axis.end(), i) != real_axis.end()) {
80 eval_range.
push_back(reduce_axes[red_counter]);
83 eval_range.
push_back(indices[arg_counter]);
87 auto square = [is_float16](
const PrimExpr& x) {
95 reduce_axes,
nullptr);
97 return func({data(eval_range), square(data(eval_range))}, reduce_axes,
nullptr);
104 auto temp_x = temp_x_x2[0];
105 auto temp_x2 = temp_x_x2[1];
107 auto reduce_extent =
make_const(data->dtype, 1);
108 for (
int i : real_axis) {
109 reduce_extent *= data->shape[i];
111 auto layer_norm_func = [&](
const Array<Var>& indices) {
112 Array<Var> reduce_indices, non_reduce_indices;
113 for (
int i = 0, n =
static_cast<int>(indices.size()); i < n; ++i) {
114 if (std::find(real_axis.begin(), real_axis.end(), i) != real_axis.end()) {
117 non_reduce_indices.
push_back(indices[i]);
120 auto mean = temp_x(non_reduce_indices) / reduce_extent;
121 auto var = temp_x2(non_reduce_indices) / reduce_extent - mean * mean;
DataType dtype
The runtime data type of the primitive expression.
Definition: expr.h:102
Reference to PrimExprNode.
Definition: expr.h:115
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
void push_back(const T &item)
push a new item to the back of the list
Definition: array.h:457
static DataType Float(int bits, int lanes=1)
Construct an float type.
Definition: data_type.h:236
bool defined() const
Definition: object.h:552
Tensor structure representing a possible input, or intermediate computation result.
Definition: tensor.h:102
Managed reference to CastNode.
Definition: expr.h:117
Tensor expression language DSL.
Definition: extracted_task.h:33
Var var(std::string name_hint, DataType t=DataType::Int(32))
Construct a new Var expression.
Tensor compute(Array< PrimExpr > shape, FCompute fcompute, std::string name="tensor", std::string tag="", Map< String, ObjectRef > attrs={})
Construct a new tensor by computing over shape, using the computation rule: result_tensor[axis] = fco...
PrimExpr make_const(DataType t, ValueType value, Span span=Span())
Make a const value with certain data type.
Definition: op.h:962
Tensor layer_norm(const Tensor &data, const Tensor &gamma, const Tensor &beta, const Array< Integer > &axis, double epsilon, std::string name="T_layer_norm", std::string tag=kInjective)
Layer normalization.
Definition: layer_norm.h:51
FCommReduce MakeTupleSumReducer()
Create communitive reducer summing over tuples.
Definition: reduction.h:587
constexpr auto kInjective
Definition: tags.h:33
tvm::PrimExpr multiply(const tvm::PrimExpr &a, const tvm::PrimExpr &b)
Definition: broadcast.h:225
constexpr auto kCommReduce
Definition: tags.h:34
Array< IterVar > MakeReduceAxes(const std::vector< int > &real_axis, const Tensor &data)
Enumerate the axes for a reduce op.
Definition: reduction.h:89
std::vector< int > GetRealAxis(int ndim, const Array< Integer > &axis)
Convert a reduction axis which could be empty or have negative elements into a real axis with valid d...
Definition: reduction.h:65
tvm::PrimExpr add(const tvm::PrimExpr &a, const tvm::PrimExpr &b)
Definition: broadcast.h:197
Array< PrimExpr > MakeReduceTargetShape(const std::vector< int > &real_axis, const Tensor &data, bool keepdims, bool atleast1d)
Calculate the target shape for a reduce op.
Definition: reduction.h:99
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
PrimExpr rsqrt(PrimExpr x, Span span=Span())
Definition: op.h:713
Operation node can generate one or multiple Tensors.