24 #ifndef TVM_RELAY_ATTRS_NN_H_
25 #define TVM_RELAY_ATTRS_NN_H_
68 .describe(
"Specifies the stride of the convolution.");
72 "If padding is non-zero, then the input is implicitly zero-padded"
73 "on both sides for padding number of points");
78 .describe(
"Specifies the dilation rate to use for dilated convolution.");
80 "Currently unused but may be added in the future.");
83 "The number of output channels in the convolution."
84 " If it is not set, inferred by shape of the weight.")
85 .set_default(NullValue<IndexExpr>());
87 .describe(
"Specifies the dimensions of the convolution window.")
92 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc."
93 "'N', 'C', 'W' stands for batch, channel, and width"
94 "dimensions respectively. Convolution is applied on the 'W'"
99 "Dimension ordering of weight. Can be 'OIW', or 'WIO', etc."
100 "'O', 'I', 'W' stands for num_filter, input_channel, and width"
101 "dimensions respectively.");
105 "Dimension ordering of output. Can be 'NCW', 'NWC', etc."
106 "'N', 'C', 'W' stands for batch, channel, and width"
107 "dimensions respectively. Default to be same as input layout.");
112 .describe(
"Output data type, set to explicit type under mixed precision setting");
134 .describe(
"Specifies the strides of the convolution.");
138 "If padding is non-zero, then the input is implicitly zero-padded"
139 "Padding support both symmetric and asymmetric as"
140 "one int : same padding used on all sides"
141 "two int : bottom, right will use same padding as top, left"
142 "four int : padding width in the order of (top, left, bottom, right)");
145 .describe(
"Specifies the dilation rate to use for dilated convolution.");
147 "Controls the connections between inputs and outputs."
148 "At groups=1, all inputs are convolved to all outputs."
149 "At groups=2, the operation becomes equivalent to having two convolution"
150 "layers side by side, each seeing half the input channels, and producing"
151 "half the output channels, and both subsequently concatenated.");
154 "The number of output channels in the convolution."
155 " If it is not set, inferred by shape of the weight.")
156 .set_default(NullValue<IndexExpr>());
158 .describe(
"Specifies the dimensions of the convolution window.")
163 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
164 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
165 "dimensions respectively. Convolution is applied on the 'H' and"
170 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
171 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
172 "dimensions respectively.");
176 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
177 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
178 "dimensions respectively. Default to be same as input layout.");
183 .describe(
"Output data type, set to explicit type under mixed precision setting");
192 "relay.attrs.ConvWinogradWeightTransformAttrs") {
194 "Tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
205 "Tile size across N axis of the weight transformation for ConvGemm. (N = OC)");
207 "Tile size across K axis of the weight transformation for ConvGemm. (K = KW * KH * IC)");
229 "The tile size of winograd. E.g. 2 for F(2x2, 3x3) and 4 for F(4x4, 3x3)");
232 .describe(
"Specifies the strides of the convolution.");
236 "If padding is non-zero, then the input is implicitly zero-padded"
237 "Padding support both symmetric and asymmetric as"
238 "one int : same padding used on all sides"
239 "two int : bottom, right will use same padding as top, left"
240 "four int : padding width in the order of (top, left, bottom, right)");
243 .describe(
"Specifies the dilation rate to use for dilated convolution.");
245 "Controls the connections between inputs and outputs."
246 "At groups=1, all inputs are convolved to all outputs."
247 "At groups=2, the operation becomes equivalent to having two convolution"
248 "layers side by side, each seeing half the input channels, and producing"
249 "half the output channels, and both subsequently concatenated.");
252 "The number of output channels in the convolution."
253 " If it is not set, inferred by shape of the weight.")
254 .set_default(NullValue<IndexExpr>());
256 .describe(
"Specifies the dimensions of the convolution window.")
261 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
262 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
263 "dimensions respectively. Convolution is applied on the 'H' and"
268 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
269 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
270 "dimensions respectively.");
274 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
275 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
276 "dimensions respectively. Default to be same as input layout.");
281 .describe(
"Output data type, set to explicit type under mixed precision setting");
287 :
public tvm::AttrsNode<Conv2DWinogradNNPACKWeightTransformAttrs> {
292 "relay.attrs.Conv2DWinogradNNPACKWeightTransformAttrs") {
295 "The convolution algorithm for Winograd NNPACK. "
296 "E.g. tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8 for WT_8x8, "
297 "tvm.contrib.nnpack.ConvolutionAlgorithm.WT_8x8_FP16 for WT_8x8_FP16");
300 .describe(
"Output data type, set to explicit type under mixed precision setting");
322 .describe(
"Specifies the strides of the convolution.");
326 "If padding is non-zero, then the input is implicitly zero-padded"
327 "Padding support both symmetric and asymmetric as"
328 "one int : same padding used on all sides"
329 "three int : back, bottom, right will use same padding as front, top, left"
330 "six int : padding width in the order of (front, top, left, back, bottom,"
334 .describe(
"Specifies the dilation rate to use for dilated convolution.");
336 "Controls the connections between inputs and outputs."
337 "At groups=1, all inputs are convolved to all outputs."
338 "At groups=2, the operation becomes equivalent to having two convolution"
339 "layers side by side, each seeing half the input channels, and producing"
340 "half the output channels, and both subsequently concatenated.");
343 "The number of output channels in the convolution."
344 " If it is not set, inferred by shape of the weight.")
345 .set_default(NullValue<IndexExpr>());
347 .describe(
"Specifies the dimensions of the convolution window.")
350 .set_default(
"NCDHW")
352 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
353 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
354 "dimensions respectively. Convolution is applied on the 'D', 'H' and"
357 .set_default(
"OIDHW")
359 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc."
360 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height,"
361 "and width dimensions respectively.");
365 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc."
366 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
367 "dimensions respectively. Default to be same as input layout.");
372 .describe(
"Output data type, set to explicit type under mixed precision setting");
392 .set_default(NullValue<IndexExpr>())
394 "The dimensionality of the output space"
395 "i.e. the number of output channels in the convolution.");
397 .describe(
"The dimensions of the convolution window.")
401 .describe(
"The strides of the convolution.");
405 "Zero-padding added to one side of the output."
406 "Padding support both symmetric and asymmetric as"
407 "one int : same padding used on all sides"
408 "three int : front, bottom, right will use same padding as back, top, left"
409 "six int : padding width in the order of (front, top, left, back, bottom, right)");
413 "If padding is non-zero, then the input is implicitly zero-padded"
414 "Padding support both symmetric and asymmetric as"
415 "one int : same padding used on all sides"
416 "three int : front, bottom, right will use same padding as back, top, left"
417 "six int : padding width in the order of (front, top, left, back, bottom, right)");
420 .describe(
"Specifies the dilation rate to use for dilated convolution.");
422 "Controls the connections between inputs and outputs."
423 "At groups=1, all inputs are convolved to all outputs."
424 "At groups=2, the operation becomes equivalent to having two convolution"
425 "layers side by side, each seeing half the input channels, and producing"
426 "half the output channels, and both subsequently concatenated.");
428 .set_default(
"NCDHW")
430 "Dimension ordering of data. Can be 'NCDHW', 'NDHWC', etc."
431 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
432 "dimensions respectively. Convolution is applied on the 'D', 'H' and"
435 .set_default(
"IODHW")
437 "Dimension ordering of data and weight. Can be 'IODHW', 'IODHW16i16o', etc."
438 "'I', 'O', 'D', 'H', 'W' stands for input_channel, num_filter, depth, height, and width"
439 "dimensions respectively.");
443 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc."
444 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
445 "dimensions respectively. Default to be same as input layout.");
448 .describe(
"Output data type, set to explicit type under mixed precision setting");
468 "The tile size of winograd. E.g. 2 for F(2x2x2, 3x3x3) and 4 for F(4x4x4, 3x3x3)");
471 .describe(
"Specifies the strides of the convolution.");
475 "If padding is non-zero, then the input is implicitly zero-padded"
476 "Padding support both symmetric and asymmetric as"
477 "one int : same padding used on all sides"
478 "three int : back, bottom, right will use same padding as front, top, left"
479 "six int : padding width in the order of (front, top, left, back, bottom,"
483 .describe(
"Specifies the dilation rate to use for dilated convolution.");
485 "Controls the connections between inputs and outputs."
486 "At groups=1, all inputs are convolved to all outputs."
487 "At groups=2, the operation becomes equivalent to having two convolution"
488 "layers side by side, each seeing half the input channels, and producing"
489 "half the output channels, and both subsequently concatenated.");
492 "The number of output channels in the convolution."
493 " If it is not set, inferred by shape of the weight.")
494 .set_default(NullValue<IndexExpr>());
496 .describe(
"Specifies the dimensions of the convolution window.")
499 .set_default(
"NCDHW")
501 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
502 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
503 "dimensions respectively. Convolution is applied on the 'D', 'H' and"
506 .set_default(
"OIDHW")
508 "Dimension ordering of weight. Can be 'OIDHW', 'OIDHW16o16i', etc."
509 "'O', 'I', 'D', 'H', 'W' stands for num_filter, input_channel, depth, height,"
510 "and width dimensions respectively.");
514 "Dimension ordering of output. Can be 'NCDHW', 'NDHWC', etc."
515 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
516 "dimensions respectively. Default to be same as input layout.");
521 .describe(
"Output data type, set to explicit type under mixed precision setting");
530 TVM_ATTR_FIELD(
axis).set_default(-1).describe(
"The axis to sum over when computing softmax.");
550 .set_default(NullValue<IndexExpr>())
552 "The dimensionality of the output space"
553 "i.e. the number of output channels in the convolution.");
555 .describe(
"The dimensions of the convolution window.")
559 .describe(
"The strides of the convolution.");
563 "Zero-padding added to one side of the output."
564 "Padding support both symmetric and asymmetric as"
565 "one int : same padding used on all sides"
566 "two int : bottom, right will use same padding as top, left"
567 "four int : padding width in the order of (top, left, bottom, right)");
571 "If padding is non-zero, then the input is implicitly zero-padded"
572 "Padding support both symmetric and asymmetric as"
573 "one int : same padding used on all sides"
574 "two int : bottom, right will use same padding as top, left"
575 "four int : padding width in the order of (top, left, bottom, right)");
578 .describe(
"Specifies the dilation rate to use for dilated convolution.");
580 "Controls the connections between inputs and outputs."
581 "At groups=1, all inputs are convolved to all outputs."
582 "At groups=2, the operation becomes equivalent to having two convolution"
583 "layers side by side, each seeing half the input channels, and producing"
584 "half the output channels, and both subsequently concatenated.");
588 "Dimension ordering of data. Can be 'NCHW', 'NHWC', etc."
589 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
590 "dimensions respectively. Convolution is applied on the 'H' and"
595 "Dimension ordering of data and weight. Can be 'IOHW', 'OIHW16o16i', etc."
596 "'I', 'O', 'H', 'W' stands for input_channel, num_filter, height, and width"
597 "dimensions respectively.");
601 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
602 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
603 "dimensions respectively. Default to be same as input layout.");
606 .describe(
"Output data type, set to explicit type under mixed precision setting");
618 .describe(
"Dilation stride on each dimension, 1 means no dilation.");
639 .set_default(NullValue<IndexExpr>())
641 "The dimensionality of the output space"
642 "i.e. the number of output channels in the convolution.");
644 .describe(
"The dimensions of the convolution window.")
648 .describe(
"The strides of the convolution.");
651 .describe(
"Zero-padding added to one side of the output.");
655 "Symmetric or asymmetric padding."
656 "Single value: the input is implicitly zero-padded on both sides."
657 "Two values: padding[0] is used for left input padding, "
658 "padding[1] is used for right input padding,");
661 .describe(
"Specifies the dilation rate to use for dilated convolution.");
663 "Controls the connections between inputs and outputs."
664 "At groups=1, all inputs are convolved to all outputs."
665 "At groups=2, the operation becomes equivalent to having two convolution"
666 "layers side by side, each seeing half the input channels, and producing"
667 "half the output channels, and both subsequently concatenated.");
671 "Dimension ordering of data. Can be 'NCW', 'NWC', etc."
672 "'N', 'C', 'W' stands for batch, channel, and width"
673 "dimensions respectively. Convolution is applied on the"
678 "Dimension ordering of data and weight. Can be 'IOW', 'IOW16o16i', etc."
679 "'I', 'O', 'W' stands for input_channel, num_filter and width"
680 "dimensions respectively.");
684 "Dimension ordering of output. Can be 'NCW', 'NWC', etc."
685 "'N', 'C', 'W' stands for batch, channel, and width"
686 "dimensions respectively. Default to be same as input layout.");
689 .describe(
"Output data type, set to explicit type under mixed precision setting");
707 .describe(
"Specifies the strides of the convolution.");
710 .describe(
"Specifies the dilation of the convolution.");
714 "If padding is non-zero, then the input is implicitly zero-padded"
715 "Padding support both symmetric and asymmetric as"
716 "one int : same padding used on all sides"
717 "two int : bottom, right will use same padding as top, left"
718 "four int : padding width in the order of (top, left, bottom, right)");
720 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
721 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
722 "dimensions respectively. Pooling is applied on the 'H' and"
727 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
728 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
729 "dimensions respectively. Pooling is applied on the 'H' and"
732 "When true, will use ceil instead of floor to compute the output shape.");
751 .describe(
"Specifies the strides of the convolution.");
754 .describe(
"Specifies the dilation of the convolution.");
758 "If padding is non-zero, then the input is implicitly zero-padded"
759 "Padding support both symmetric and asymmetric as"
760 "one int : same padding used on all sides"
761 "two int : bottom, right will use same padding as top, left"
762 "four int : padding width in the order of (top, left, bottom, right)");
764 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
765 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
766 "dimensions respectively. Pooling is applied on the 'H' and"
771 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
772 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
773 "dimensions respectively. Pooling is applied on the 'H' and"
776 "When true, will use ceil instead of floor to compute the output shape.");
779 .describe(
"When true, will include padding to compute the average");
790 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
791 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
792 "dimensions respectively. Pooling is applied on the 'H' and"
797 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
798 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
799 "dimensions respectively. Pooling is applied on the 'H' and"
813 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc."
814 "'N', 'C', 'W' stands for batch, channel, and width"
815 "dimensions respectively. Pooling is applied on the"
820 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc."
821 "'N', 'C', 'W' stands for batch, channel, and width"
822 "dimensions respectively. Pooling is applied on the"
836 .describe(
"Output height and width.");
838 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
839 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
840 "dimensions respectively. Pooling is applied on the 'H' and"
845 "Dimension ordering of output data. Can be 'NCHW', 'NHWC', etc."
846 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
847 "dimensions respectively. Pooling is applied on the 'H' and"
861 .describe(
"Output depth, height and width.");
863 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
864 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
865 "dimensions respectively. Pooling is applied on 'D', 'H' and"
870 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc."
871 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
872 "dimensions respectively. Pooling is applied on 'D', 'H' and"
891 .describe(
"Specifies the strides of the convolution.");
894 .describe(
"Specifies the dilation of the convolution.");
898 "If padding is non-zero, then the input is implicitly zero-padded"
899 "Padding supports both symmetric and asymmetric as"
900 "one int : same padding used on each side"
901 "two int : indicates left padding, right padding");
903 "Dimension ordering of input data. Can be 'NCW', 'NWC', etc."
904 "'N', 'C', 'W' stands for batch, channel, and width"
905 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
909 "Dimension ordering of output data. Can be 'NCW', 'NWC', etc."
910 "'N', 'C', 'W' stands for batch, channel, and width"
911 "dimensions respectively. Pooling is applied on the 'W' dimensions.");
913 "When true, will use ceil instead of floor to compute the output shape.");
932 .describe(
"Specifies the strides of the convolution.");
935 .describe(
"Specifies the dilation of the convolution.");
939 "If padding is non-zero, then the input is implicitly zero-padded"
940 "Padding supports both symmetric and asymmetric as"
941 "one int : same padding used on each side"
942 "two int : indicates left padding, right padding");
944 "Dimension ordering of input data. Can be 'NCW', 'NHC', etc."
945 "'N', 'C', 'W' stands for batch, channel, and width"
946 "dimensions respectively. Pooling is applied on the 'W' dimension.");
950 "Dimension ordering of output data. Can be 'NCW', 'NHC', etc."
951 "'N', 'C', 'W' stands for batch, channel, and width"
952 "dimensions respectively. Pooling is applied on the 'W' dimension.");
954 "When true, will use ceil instead of floor to compute the output shape.");
957 .describe(
"When true, will include padding to compute the average");
975 .describe(
"Specifies the strides of the convolution.");
978 .describe(
"Specifies the dilation of the convolution.");
982 "If padding is non-zero, then the input is implicitly zero-padded"
983 "Padding support both symmetric and asymmetric as"
984 "one int : same padding used on all sides"
985 "three int : back, bottom, right will use same padding as front, top, left"
986 "six int : padding width in the order of (front, top, left, back, bottom, right)");
988 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
989 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
990 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
995 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc."
996 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
997 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
1000 "When true, will use ceil instead of floor to compute the output shape.");
1019 .describe(
"Specifies the strides of the convolution.");
1022 .describe(
"Specifies the dilation of the convolution.");
1026 "If padding is non-zero, then the input is implicitly zero-padded"
1027 "Padding support both symmetric and asymmetric as"
1028 "one int : same padding used on all sides"
1029 "three int : back, bottom, right will use same padding as front, top, left"
1030 "six int : padding width in the order of (front, top, left, back, bottom, right)");
1032 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
1033 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
1034 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
1039 "Dimension ordering of output data. Can be 'NCDHW', 'NDHWC', etc."
1040 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
1041 "dimensions respectively. Pooling is applied on the 'D', 'H' and"
1044 "When true, will use ceil instead of floor to compute the output shape.");
1047 .describe(
"When true, will include padding to compute the average");
1067 .describe(
"Output data type, set to explicit type under mixed precision setting");
1071 .describe(
"Whether the first input tensor is in transposed format.");
1075 .describe(
"Whether the second input tensor is in transposed format.");
1093 .describe(
"Output data type, set to explicit type under mixed precision setting");
1109 .describe(
"Output data type, set to explicit type under mixed precision setting");
1112 .describe(
"Dimension ordering of weight. Packed layouts, such as NC8n, are possible.");
1128 .describe(
"Output data type, set to explicit type under mixed precision setting");
1132 .describe(
"Whether the first input tensor is in transposed format.");
1136 .describe(
"Whether the second input tensor is in transposed format.");
1148 "Indicate whether sparse matrix is multiplied on the right or the left. If true, then "
1149 "the operation is S * D^T (D dense, S sparse). If false, the operation is D * S^T");
1165 "Dimension ordering of input data. Can be 'NCHW', 'NHWC'"
1166 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1167 "dimensions respectively.");
1170 .describe(
"Kernel size for SparseConv2D, 1x1 or 3x3. ");
1195 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1196 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1197 "dimensions respectively. Upsampling is applied on the 'H' and"
1200 .set_default(
"nearest_neighbor")
1202 "Specify the mode to use for scaling."
1203 "nearest_neighbor - Nearest Neighbor"
1204 "bilinear - Bilinear Interpolation"
1205 "bicubic - Bicubic Interpolation");
1208 .describe(
"Should be true to preserve the values at the corner pixels");
1226 "Dimension ordering of input data. Can be 'NCDHW', 'NDHWC', etc."
1227 "'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
1228 "dimensions respectively. Upsampling is applied on the 'D', 'H' and"
1231 .set_default(
"nearest_neighbor")
1233 "Specify the mode to use for scaling."
1234 "nearest_neighbor - Nearest Neighbor"
1235 "trilinear - Trilinear Interpolation");
1237 .set_default(
"half_pixel")
1239 "Describes how to transform the coordinate in the resized tensor"
1240 "to the coordinate in the original tensor."
1241 "Refer to the ONNX Resize operator specification for details"
1242 "Available options are half_pixel, align_corners and asymmetric");
1253 "Number of values padded to the edges of each axis, "
1254 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1256 .set_default(
"constant")
1258 "Padding type to use. \"constant\" pads with constant_value, "
1259 "\"edge\" pads using the edge values of the input array, "
1260 "\"reflect\" pads by reflecting values with respect to the edges.");
1271 .set_default(
"SYMMETRIC")
1272 .describe(
"Specifies how mirroring should be performed.");
1274 "Number of values padded to the edges of each axis, "
1275 "in the format of ((before_1, after_1), ..., (before_N, after_N))");
1285 "Slope coefficient for the negative half axis.");
1295 "Specify which shape axis the channel is specified.");
1304 .describe(
"Fraction of the input that gets dropped out during training time")
1317 TVM_ATTR_FIELD(
axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1319 .describe(
"Small float added to variance to avoid dividing by zero")
1322 .describe(
"If True, add offset of beta to normalized tensor. If False, beta is ignored")
1326 "If True, multiply by gamma. If False, gamma is not used. "
1327 "When the next layer is piecewise linear (also, e.g., nn.relu), "
1328 "this can be disabled since the scaling will be done by the next layer.")
1341 TVM_ATTR_FIELD(
axis).describe(
"Specify which shape axis denotes the channel.").set_default(1);
1343 .describe(
"Small float added to variance to avoid dividing by zero")
1346 "If true, add offset of beta to normalized tensor; "
1347 "otherwise, beta is ignored.");
1349 "If true, multiply by gamma; otherwise, gamma is ignored.");
1361 TVM_ATTR_FIELD(
axis).set_default(-1).describe(
"Specify which shape axis denotes the channel.");
1363 "Small float added to variance to avoid dividing by zero");
1365 "If true, add offset of beta to normalized tensor; "
1366 "otherwise, beta is ignored.");
1368 "If true, multiply by gamma; otherwise, gamma is ignored.");
1383 .describe(
"Specify number of groups to separate the channels into.");
1384 TVM_ATTR_FIELD(
axis).set_default(1).describe(
"Specify which shape axis denotes the channel.");
1386 "Small float added to variance to avoid dividing by zero");
1388 "If true, add offset of beta to normalized tensor; "
1389 "otherwise, beta is ignored.");
1391 "If true, multiply by gamma; otherwise, gamma is ignored.");
1405 "The size of the local region to be considered for normalization.");
1407 TVM_ATTR_FIELD(
bias).set_default(2).describe(
"The offset parameter to avoid division by 0.");
1419 TVM_ATTR_FIELD(
eps).describe(
"A lower bound value for the norm, to avoid division by 0.");
1441 .describe(
"Specifies the strides of the convolution.");
1445 "If padding is non-zero, then the input is implicitly zero-padded"
1446 "Padding support both symmetric and asymmetric as"
1447 "one int : same padding used on all sides"
1448 "two int : bottom, right will use same padding as top, left"
1449 "four int : padding width in the order of (top, left, bottom, right)");
1452 .describe(
"Specifies the dilation rate to use for dilated convolution.");
1456 "Controls the connections between inputs and offsets."
1457 "Input channels are partitioned into multiple deformable groups. Offsets"
1458 "are shared across input channels in the same deformable group.");
1460 "Controls the connections between inputs and outputs."
1461 "At groups=1, all inputs are convolved to all outputs."
1462 "At groups=2, the operation becomes equivalent to having two convolution"
1463 "layers side by side, each seeing half the input channels, and producing"
1464 "half the output channels, and both subsequently concatenated.");
1467 "The number of output channels in the convolution."
1468 " If it is not set, inferred by shape of the weight.")
1469 .set_default(NullValue<IndexExpr>());
1471 .describe(
"Specifies the dimensions of the convolution window.")
1474 .set_default(
"NCHW")
1476 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1477 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1478 "dimensions respectively. Convolution is applied on the 'H' and"
1481 .set_default(
"OIHW")
1483 "Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
1484 "'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
1485 "dimensions respectively.");
1489 "Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
1490 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1491 "dimensions respectively. Default to be same as input layout.");
1496 .describe(
"Output data type, set to explicit type under mixed precision setting");
1508 .describe(
"The size of subpixel blocks to compose or decompose.")
1511 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1512 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1513 "dimensions respectively.");
1515 "Indicates order in which channels are accessed. Must be one of"
1532 .describe(
"Kernel size for correlation, must be an odd number.")
1538 .describe(
"Padding for data1 and data2.")
1541 .describe(
"Operation type is either multiplication or substraction.")
1544 "Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
1545 "'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
1546 "dimensions respectively.");
1559 .describe(
"1-D containing block size for each spatial dimension.");
1573 .describe(
"1-D containing block size for each spatial dimension.");
1585 "The reduction method to apply to the output. Can be"
1586 "'none', 'mean' or 'sum'.");
The base class of the all the Use "curiously recurring template pattern".
Definition: attrs.h:870
Reference to PrimExprNode.
Definition: expr.h:115
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
Runtime primitive data type.
Definition: data_type.h:43
Reference to string objects.
Definition: string.h:98
Helpers for attribute objects.
#define TVM_ATTR_FIELD(FieldName)
Declare an attribute field.
Definition: attrs.h:76
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
DataType NullValue< DataType >()
Definition: attrs.h:90
TObjectRef NullValue()
Create a NodeRef type that represents null.
Definition: attrs.h:84
Base classes for the Relay IR.
Attributes for 1d adaptive pool operator.
Definition: nn.h:805
TVM_DECLARE_ATTRS(AdaptivePool1DAttrs, "relay.attrs.AdaptivePool1DAttrs")
Definition: nn.h:810
Array< IndexExpr > output_size
Definition: nn.h:806
tvm::String out_layout
Definition: nn.h:808
std::string layout
Definition: nn.h:807
Attributes for 2d adaptive pool operator.
Definition: nn.h:828
Array< IndexExpr > output_size
Definition: nn.h:829
std::string layout
Definition: nn.h:830
TVM_DECLARE_ATTRS(AdaptivePool2DAttrs, "relay.attrs.AdaptivePool2DAttrs")
Definition: nn.h:833
tvm::String out_layout
Definition: nn.h:831
Attributes for 3d adaptive pool operator.
Definition: nn.h:853
Array< IndexExpr > output_size
Definition: nn.h:854
tvm::String out_layout
Definition: nn.h:856
std::string layout
Definition: nn.h:855
TVM_DECLARE_ATTRS(AdaptivePool3DAttrs, "relay.attrs.AdaptivePool3DAttrs")
Definition: nn.h:858
Attributes for 1D avg pool operator.
Definition: nn.h:918
Array< IndexExpr > strides
Definition: nn.h:920
Array< IndexExpr > pool_size
Definition: nn.h:919
tvm::String out_layout
Definition: nn.h:924
bool count_include_pad
Definition: nn.h:926
Array< IndexExpr > dilation
Definition: nn.h:921
Array< IndexExpr > padding
Definition: nn.h:922
bool ceil_mode
Definition: nn.h:925
TVM_DECLARE_ATTRS(AvgPool1DAttrs, "relay.attrs.AvgPool1DAttrs")
Definition: nn.h:928
std::string layout
Definition: nn.h:923
Attributes for avg pool operator.
Definition: nn.h:737
tvm::String out_layout
Definition: nn.h:743
Array< IndexExpr > dilation
Definition: nn.h:741
tvm::String layout
Definition: nn.h:742
TVM_DECLARE_ATTRS(AvgPool2DAttrs, "relay.attrs.AvgPool2DAttrs")
Definition: nn.h:747
bool ceil_mode
Definition: nn.h:744
Array< IndexExpr > padding
Definition: nn.h:740
bool count_include_pad
Definition: nn.h:745
Array< IndexExpr > strides
Definition: nn.h:739
Array< IndexExpr > pool_size
Definition: nn.h:738
Attributes for 3D avg pool operator.
Definition: nn.h:1005
TVM_DECLARE_ATTRS(AvgPool3DAttrs, "relay.attrs.AvgPool3DAttrs")
Definition: nn.h:1015
Array< IndexExpr > strides
Definition: nn.h:1007
tvm::String out_layout
Definition: nn.h:1011
Array< IndexExpr > pool_size
Definition: nn.h:1006
Array< IndexExpr > dilation
Definition: nn.h:1008
Array< IndexExpr > padding
Definition: nn.h:1009
bool ceil_mode
Definition: nn.h:1012
std::string layout
Definition: nn.h:1010
bool count_include_pad
Definition: nn.h:1013
Attributes for batch matmul operator.
Definition: nn.h:1117
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1122
bool transpose_b
Definition: nn.h:1120
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1121
TVM_DECLARE_ATTRS(BatchMatmulAttrs, "relay.attrs.BatchMatmulAttrs")
Definition: nn.h:1124
bool transpose_a
Definition: nn.h:1119
DataType out_dtype
Definition: nn.h:1118
Attributes used in batch_norm operator.
Definition: nn.h:1310
int axis
Definition: nn.h:1311
bool scale
Definition: nn.h:1314
bool center
Definition: nn.h:1313
double epsilon
Definition: nn.h:1312
TVM_DECLARE_ATTRS(BatchNormAttrs, "relay.attrs.BatchNormAttrs")
Definition: nn.h:1316
Attributes used in BatchToSpaceND operator.
Definition: nn.h:1566
TVM_DECLARE_ATTRS(BatchToSpaceNDAttrs, "relay.attrs.BatchToSpaceNDAttrs")
Definition: nn.h:1570
Array< Integer > block_shape
Definition: nn.h:1567
Array< Array< IndexExpr > > crops
Definition: nn.h:1568
Add a 1D Tensor to an axis of a data.
Definition: nn.h:42
TVM_DECLARE_ATTRS(BiasAddAttrs, "relay.attrs.BiasAddAttrs")
Definition: nn.h:45
int axis
Definition: nn.h:43
Attributes used in 1D convolution operators.
Definition: nn.h:51
Array< IndexExpr > strides
Definition: nn.h:52
DataType out_dtype
Definition: nn.h:61
int groups
Definition: nn.h:55
Array< IndexExpr > padding
Definition: nn.h:53
TVM_DECLARE_ATTRS(Conv1DAttrs, "relay.attrs.Conv1DAttrs")
Definition: nn.h:63
tvm::String data_layout
Definition: nn.h:58
tvm::String kernel_layout
Definition: nn.h:59
Array< IndexExpr > dilation
Definition: nn.h:54
Array< IndexExpr > kernel_size
Definition: nn.h:57
IndexExpr channels
Definition: nn.h:56
tvm::String out_layout
Definition: nn.h:60
Attributes used in 1D transposed convolution operator.
Definition: nn.h:624
TVM_DECLARE_ATTRS(Conv1DTransposeAttrs, "relay.attrs.Conv1DTransposeAttrs")
Definition: nn.h:637
std::string out_layout
Definition: nn.h:634
Array< IndexExpr > strides
Definition: nn.h:627
Array< IndexExpr > kernel_size
Definition: nn.h:626
int groups
Definition: nn.h:631
std::string data_layout
Definition: nn.h:632
Array< IndexExpr > output_padding
Definition: nn.h:629
IndexExpr channels
Definition: nn.h:625
Array< IndexExpr > dilation
Definition: nn.h:630
std::string kernel_layout
Definition: nn.h:633
Array< IndexExpr > padding
Definition: nn.h:628
DataType out_dtype
Definition: nn.h:635
Attributes used in convolution operators.
Definition: nn.h:117
DataType out_dtype
Definition: nn.h:129
Array< IndexExpr > dilation
Definition: nn.h:120
tvm::String out_layout
Definition: nn.h:126
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:128
IndexExpr channels
Definition: nn.h:122
Array< IndexExpr > kernel_size
Definition: nn.h:123
Array< IndexExpr > padding
Definition: nn.h:119
TVM_DECLARE_ATTRS(Conv2DAttrs, "relay.attrs.Conv2DAttrs")
Definition: nn.h:131
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:127
tvm::String kernel_layout
Definition: nn.h:125
int groups
Definition: nn.h:121
Array< IndexExpr > strides
Definition: nn.h:118
tvm::String data_layout
Definition: nn.h:124
Attributes used in transposed convolution operator.
Definition: nn.h:535
int groups
Definition: nn.h:542
TVM_DECLARE_ATTRS(Conv2DTransposeAttrs, "relay.attrs.Conv2DTransposeAttrs")
Definition: nn.h:548
Array< IndexExpr > strides
Definition: nn.h:538
Array< IndexExpr > dilation
Definition: nn.h:541
std::string data_layout
Definition: nn.h:543
std::string out_layout
Definition: nn.h:545
Array< IndexExpr > padding
Definition: nn.h:539
IndexExpr channels
Definition: nn.h:536
DataType out_dtype
Definition: nn.h:546
Array< IndexExpr > output_padding
Definition: nn.h:540
std::string kernel_layout
Definition: nn.h:544
Array< IndexExpr > kernel_size
Definition: nn.h:537
Attributes used in convolution operators with winograd algorithm.
Definition: nn.h:212
DataType out_dtype
Definition: nn.h:225
tvm::String kernel_layout
Definition: nn.h:221
Array< IndexExpr > strides
Definition: nn.h:214
tvm::String data_layout
Definition: nn.h:220
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:224
int tile_size
Definition: nn.h:213
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:223
TVM_DECLARE_ATTRS(Conv2DWinogradAttrs, "relay.attrs.Conv2DWinogradAttrs")
Definition: nn.h:227
tvm::String out_layout
Definition: nn.h:222
Array< IndexExpr > kernel_size
Definition: nn.h:219
int groups
Definition: nn.h:217
Array< IndexExpr > dilation
Definition: nn.h:216
IndexExpr channels
Definition: nn.h:218
Array< IndexExpr > padding
Definition: nn.h:215
Attributes used in convolution operators.
Definition: nn.h:305
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:315
DataType out_dtype
Definition: nn.h:317
Array< IndexExpr > kernel_size
Definition: nn.h:311
tvm::String kernel_layout
Definition: nn.h:313
tvm::String out_layout
Definition: nn.h:314
tvm::String data_layout
Definition: nn.h:312
Array< IndexExpr > strides
Definition: nn.h:306
IndexExpr channels
Definition: nn.h:310
int groups
Definition: nn.h:309
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:316
Array< IndexExpr > padding
Definition: nn.h:307
TVM_DECLARE_ATTRS(Conv3DAttrs, "relay.attrs.Conv3DAttrs")
Definition: nn.h:319
Array< IndexExpr > dilation
Definition: nn.h:308
Attributes used in transposed convolution operator.
Definition: nn.h:377
tvm::String data_layout
Definition: nn.h:385
Array< IndexExpr > strides
Definition: nn.h:380
Array< IndexExpr > output_padding
Definition: nn.h:382
Array< IndexExpr > padding
Definition: nn.h:381
Array< IndexExpr > kernel_size
Definition: nn.h:379
tvm::String kernel_layout
Definition: nn.h:386
int groups
Definition: nn.h:384
TVM_DECLARE_ATTRS(Conv3DTransposeAttrs, "relay.attrs.Conv3DTransposeAttrs")
Definition: nn.h:390
DataType out_dtype
Definition: nn.h:388
Array< IndexExpr > dilation
Definition: nn.h:383
IndexExpr channels
Definition: nn.h:378
tvm::String out_layout
Definition: nn.h:387
Attributes used in 3d winograd convolution operators.
Definition: nn.h:453
int groups
Definition: nn.h:458
TVM_DECLARE_ATTRS(Conv3DWinogradAttrs, "relay.attrs.Conv3DWinogradAttrs")
Definition: nn.h:466
std::string data_layout
Definition: nn.h:461
Array< IndexExpr > dilation
Definition: nn.h:457
std::string kernel_layout
Definition: nn.h:462
DataType out_dtype
Definition: nn.h:464
Array< IndexExpr > kernel_size
Definition: nn.h:460
Array< IndexExpr > padding
Definition: nn.h:456
int tile_size
Definition: nn.h:454
Array< IndexExpr > strides
Definition: nn.h:455
IndexExpr channels
Definition: nn.h:459
std::string out_layout
Definition: nn.h:463
Attributes used in correlation operators.
Definition: nn.h:1521
String layout
Definition: nn.h:1528
TVM_DECLARE_ATTRS(CorrelationAttrs, "relay.attrs.CorrelationAttrs")
Definition: nn.h:1530
int kernel_size
Definition: nn.h:1522
int stride2
Definition: nn.h:1525
int stride1
Definition: nn.h:1524
Array< IndexExpr > padding
Definition: nn.h:1526
int max_displacement
Definition: nn.h:1523
bool is_multiply
Definition: nn.h:1527
Attributes for dense operator.
Definition: nn.h:1080
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1084
IndexExpr units
Definition: nn.h:1081
TVM_DECLARE_ATTRS(DenseAttrs, "relay.attrs.DenseAttrs")
Definition: nn.h:1087
DataType out_dtype
Definition: nn.h:1085
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1083
Attributes for dense_pack operator.
Definition: nn.h:1098
TVM_DECLARE_ATTRS(DensePackAttrs, "relay.attrs.DensePackAttrs")
Definition: nn.h:1103
tvm::String weight_layout
Definition: nn.h:1101
IndexExpr units
Definition: nn.h:1099
DataType out_dtype
Definition: nn.h:1100
Attributes used in dilate operator.
Definition: nn.h:611
TVM_DECLARE_ATTRS(DilateAttrs, "relay.attrs.DilateAttrs")
Definition: nn.h:615
Array< IndexExpr > strides
Definition: nn.h:612
double dilation_value
Definition: nn.h:613
Attributes used in dropout operator.
Definition: nn.h:1300
double rate
Definition: nn.h:1301
TVM_DECLARE_ATTRS(DropoutAttrs, "relay.attrs.DropoutAttrs")
Definition: nn.h:1302
Attributes for FIFO buffer operator.
Definition: nn.h:1175
TVM_DECLARE_ATTRS(FIFOBufferAttrs, "relay.attrs.FIFOBufferAttrs")
Definition: nn.h:1178
int axis
Definition: nn.h:1176
Attributes for global pool operator.
Definition: nn.h:784
TVM_DECLARE_ATTRS(GlobalPool2DAttrs, "relay.attrs.GlobalPool2DAttrs")
Definition: nn.h:788
tvm::String layout
Definition: nn.h:785
tvm::String out_layout
Definition: nn.h:786
Attributes used in group_norm operator.
Definition: nn.h:1373
TVM_DECLARE_ATTRS(GroupNormAttrs, "relay.attrs.GroupNormAttrs")
Definition: nn.h:1380
int axis
Definition: nn.h:1375
bool scale
Definition: nn.h:1378
int num_groups
Definition: nn.h:1374
double epsilon
Definition: nn.h:1376
bool center
Definition: nn.h:1377
Attributes used in instance_norm operator.
Definition: nn.h:1334
int axis
Definition: nn.h:1335
bool scale
Definition: nn.h:1338
TVM_DECLARE_ATTRS(InstanceNormAttrs, "relay.attrs.InstanceNormAttrs")
Definition: nn.h:1340
double epsilon
Definition: nn.h:1336
bool center
Definition: nn.h:1337
Attributes for L2Normalize operator.
Definition: nn.h:1414
double eps
Definition: nn.h:1415
TVM_DECLARE_ATTRS(L2NormalizeAttrs, "relay.attrs.L2NormalizeAttrs")
Definition: nn.h:1418
Array< Integer > axis
Definition: nn.h:1416
Attributes for LRN operator.
Definition: nn.h:1396
int size
Definition: nn.h:1397
double bias
Definition: nn.h:1399
double beta
Definition: nn.h:1401
double alpha
Definition: nn.h:1400
int axis
Definition: nn.h:1398
TVM_DECLARE_ATTRS(LRNAttrs, "relay.attrs.LRNAttrs")
Definition: nn.h:1403
Attributes used in layer_norm operator.
Definition: nn.h:1354
bool center
Definition: nn.h:1357
double epsilon
Definition: nn.h:1356
TVM_DECLARE_ATTRS(LayerNormAttrs, "relay.attrs.LayerNormAttrs")
Definition: nn.h:1360
int axis
Definition: nn.h:1355
bool scale
Definition: nn.h:1358
Attributes for leaky relu operator.
Definition: nn.h:1280
TVM_DECLARE_ATTRS(LeakyReluAttrs, "relay.attrs.LeakyReluAttrs")
Definition: nn.h:1283
double alpha
Definition: nn.h:1281
Attributes for matmul operator.
Definition: nn.h:1052
DataType out_dtype
Definition: nn.h:1054
tvm::String auto_scheduler_rewritten_layout
Definition: nn.h:1058
bool transpose_a
Definition: nn.h:1055
TVM_DECLARE_ATTRS(MatmulAttrs, "relay.attrs.MatmulAttrs")
Definition: nn.h:1061
IndexExpr units
Definition: nn.h:1053
Array< PrimExpr > meta_schedule_original_shape
Definition: nn.h:1059
bool transpose_b
Definition: nn.h:1056
Attributes for 1D max pool operator.
Definition: nn.h:878
std::string layout
Definition: nn.h:883
Array< IndexExpr > strides
Definition: nn.h:880
Array< IndexExpr > padding
Definition: nn.h:882
bool ceil_mode
Definition: nn.h:885
tvm::String out_layout
Definition: nn.h:884
TVM_DECLARE_ATTRS(MaxPool1DAttrs, "relay.attrs.MaxPool1DAttrs")
Definition: nn.h:887
Array< IndexExpr > pool_size
Definition: nn.h:879
Array< IndexExpr > dilation
Definition: nn.h:881
Attributes for max pool operator.
Definition: nn.h:694
TVM_DECLARE_ATTRS(MaxPool2DAttrs, "relay.attrs.MaxPool2DAttrs")
Definition: nn.h:703
tvm::String out_layout
Definition: nn.h:700
bool ceil_mode
Definition: nn.h:701
Array< IndexExpr > strides
Definition: nn.h:696
tvm::String layout
Definition: nn.h:699
Array< IndexExpr > pool_size
Definition: nn.h:695
Array< IndexExpr > padding
Definition: nn.h:697
Array< IndexExpr > dilation
Definition: nn.h:698
Attributes for 3D max pool operator.
Definition: nn.h:962
TVM_DECLARE_ATTRS(MaxPool3DAttrs, "relay.attrs.MaxPool3DAttrs")
Definition: nn.h:971
Array< IndexExpr > dilation
Definition: nn.h:965
bool ceil_mode
Definition: nn.h:969
std::string layout
Definition: nn.h:967
Array< IndexExpr > pool_size
Definition: nn.h:963
Array< IndexExpr > strides
Definition: nn.h:964
tvm::String out_layout
Definition: nn.h:968
Array< IndexExpr > padding
Definition: nn.h:966
Attributes used for the MirrorPadding operator.
Definition: nn.h:1265
TVM_DECLARE_ATTRS(MirrorPadAttrs, "relay.attrs.MirrorPadAttrs")
Definition: nn.h:1269
Array< Array< IndexExpr > > pad_width
Definition: nn.h:1267
std::string mode
Definition: nn.h:1266
Attributes used in NLLLoss operator.
Definition: nn.h:1579
std::string reduction
Definition: nn.h:1580
TVM_DECLARE_ATTRS(NLLLossAttrs, "relay.attrs.NLLLossAttrs")
Definition: nn.h:1583
int ignore_index
Definition: nn.h:1581
Attributes for prelu operator.
Definition: nn.h:1290
int axis
Definition: nn.h:1291
TVM_DECLARE_ATTRS(PReluAttrs, "relay.attrs.PReluAttrs")
Definition: nn.h:1293
Attributes used for the padding operator.
Definition: nn.h:1247
tvm::String pad_mode
Definition: nn.h:1249
TVM_DECLARE_ATTRS(PadAttrs, "relay.attrs.PadAttrs")
Definition: nn.h:1251
Array< Array< Integer > > pad_width
Definition: nn.h:1248
Attributes used in softmax operators.
Definition: nn.h:526
int axis
Definition: nn.h:527
TVM_DECLARE_ATTRS(SoftmaxAttrs, "relay.attrs.SoftmaxAttrs")
Definition: nn.h:529
Attributes used in SpaceToBatchND operator.
Definition: nn.h:1551
TVM_DECLARE_ATTRS(SpaceToBatchNDAttrs, "relay.attrs.SpaceToBatchNDAttrs")
Definition: nn.h:1556
double pad_value
Definition: nn.h:1554
Array< Integer > block_shape
Definition: nn.h:1552
Array< Array< IndexExpr > > paddings
Definition: nn.h:1553
Attributes for sparse_dense operator.
Definition: nn.h:1159
Array< IndexExpr > kernel_size
Definition: nn.h:1161
std::string layout
Definition: nn.h:1160
TVM_DECLARE_ATTRS(SparseConv2DAttrs, "relay.attrs.SparseConv2DAttrs")
Definition: nn.h:1163
Attributes for sparse_dense operator.
Definition: nn.h:1141
TVM_DECLARE_ATTRS(SparseDenseAttrs, "relay.attrs.SparseDenseAttrs")
Definition: nn.h:1144
bool sparse_lhs
Definition: nn.h:1142
Attributes for sparse_transpose operator.
Definition: nn.h:1154
TVM_DECLARE_ATTRS(SparseTransposeAttrs, "relay.attrs.SparseTransposeAttrs")
Definition: nn.h:1155
Attributes used in subpixel operators.
Definition: nn.h:1501
int block_size
Definition: nn.h:1502
std::string layout
Definition: nn.h:1503
TVM_DECLARE_ATTRS(SubPixelAttrs, "relay.attrs.SubPixelAttrs")
Definition: nn.h:1506
std::string mode
Definition: nn.h:1504
Attributes for upsampling3d operator.
Definition: nn.h:1213
TVM_DECLARE_ATTRS(UpSampling3DAttrs, "relay.attrs.UpSampling3DAttrs")
Definition: nn.h:1221
double scale_w
Definition: nn.h:1216
double scale_d
Definition: nn.h:1214
std::string method
Definition: nn.h:1218
double scale_h
Definition: nn.h:1215
std::string coordinate_transformation_mode
Definition: nn.h:1219
std::string layout
Definition: nn.h:1217
Attributes for upsampling operator.
Definition: nn.h:1184
double scale_h
Definition: nn.h:1185
bool align_corners
Definition: nn.h:1189
TVM_DECLARE_ATTRS(UpSamplingAttrs, "relay.attrs.UpSamplingAttrs")
Definition: nn.h:1191
tvm::String method
Definition: nn.h:1188
tvm::String layout
Definition: nn.h:1187
double scale_w
Definition: nn.h:1186