tvm
search_strategy.h
Go to the documentation of this file.
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one
3  * or more contributor license agreements. See the NOTICE file
4  * distributed with this work for additional information
5  * regarding copyright ownership. The ASF licenses this file
6  * to you under the Apache License, Version 2.0 (the
7  * "License"); you may not use this file except in compliance
8  * with the License. You may obtain a copy of the License at
9  *
10  * http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing,
13  * software distributed under the License is distributed on an
14  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15  * KIND, either express or implied. See the License for the
16  * specific language governing permissions and limitations
17  * under the License.
18  */
19 #ifndef TVM_S_TIR_META_SCHEDULE_SEARCH_STRATEGY_H_
20 #define TVM_S_TIR_META_SCHEDULE_SEARCH_STRATEGY_H_
21 
22 #include <tvm/ffi/container/array.h>
23 #include <tvm/ffi/function.h>
24 #include <tvm/ffi/optional.h>
25 #include <tvm/ffi/reflection/registry.h>
26 #include <tvm/runtime/object.h>
33 
34 namespace tvm {
35 namespace s_tir {
36 namespace meta_schedule {
37 
38 // Forward declaration
39 class TuneContext;
40 class SearchStrategy;
41 
78 class SearchStrategyNode : public runtime::Object {
79  public:
81  virtual ~SearchStrategyNode() = default;
82 
88  virtual void InitializeWithTuneContext(const TuneContext& context) = 0;
89 
101  virtual void PreTuning(int max_trials, int num_trials_per_iter,
102  const ffi::Array<s_tir::Schedule>& design_spaces,
103  const ffi::Optional<Database>& database,
104  const ffi::Optional<CostModel>& cost_model) = 0;
105 
111  virtual void PostTuning() = 0;
112 
117  virtual ffi::Optional<ffi::Array<MeasureCandidate>> GenerateMeasureCandidates() = 0;
118 
124  virtual void NotifyRunnerResults(const ffi::Array<MeasureCandidate>& measure_candidates,
125  const ffi::Array<RunnerResult>& results) = 0;
126 
131  virtual SearchStrategy Clone() const = 0;
132 
133  static constexpr const bool _type_mutable = true;
134  TVM_FFI_DECLARE_OBJECT_INFO("s_tir.meta_schedule.SearchStrategy", SearchStrategyNode, Object);
135 };
136 
141 class SearchStrategy : public runtime::ObjectRef {
142  public:
147  using FInitializeWithTuneContext = ffi::TypedFunction<void(const TuneContext&)>;
151  using FPreTuning = ffi::TypedFunction<void(
152  int max_trials, int num_trials_per_iter, const ffi::Array<s_tir::Schedule>&,
153  const ffi::Optional<Database>&, const ffi::Optional<CostModel>&)>;
155  using FPostTuning = ffi::TypedFunction<void()>;
161  ffi::TypedFunction<ffi::Optional<ffi::Array<MeasureCandidate>>()>;
166  using FNotifyRunnerResults = ffi::TypedFunction<void(const ffi::Array<MeasureCandidate>&,
167  const ffi::Array<RunnerResult>&)>;
172  using FClone = ffi::TypedFunction<SearchStrategy()>;
184  FInitializeWithTuneContext f_initialize_with_tune_context, //
185  FPreTuning f_pre_tuning, //
186  FPostTuning f_post_tuning, //
187  FGenerateMeasureCandidates f_generate_measure_candidates, //
188  FNotifyRunnerResults f_notify_runner_results, //
189  FClone f_clone);
190 
195  TVM_DLL static SearchStrategy ReplayTrace(int max_fail_count);
196 
198  TVM_DLL static SearchStrategy ReplayFunc();
199 
211  TVM_DLL static SearchStrategy EvolutionarySearch(int population_size, //
212  double init_measured_ratio, //
213  int init_min_unmeasured, //
214  int max_fail_count, //
215  int genetic_num_iters, //
216  double genetic_mutate_prob, //
217  int genetic_max_fail_count, //
218  double eps_greedy);
219 
221 };
222 
225  public:
232 
245 
246  static void RegisterReflection() {
247  // `f_initialize_with_tune_context` is not registered
248  // `f_pre_tuning` is not registered
249  // `f_post_tuning` is not registered
250  // `f_generate_measure_candidates` is not registered
251  // `f_notify_runner_results` is not registered
252  // `f_clone` is not registered
253  namespace refl = tvm::ffi::reflection;
254  refl::ObjectDef<PySearchStrategyNode>();
255  }
256 
257  void InitializeWithTuneContext(const TuneContext& context) final;
258  void PreTuning(int max_trials, int num_trials_per_iter,
259  const ffi::Array<s_tir::Schedule>& design_spaces,
260  const ffi::Optional<Database>& database,
261  const ffi::Optional<CostModel>& cost_model) final;
262  void PostTuning() final;
263  ffi::Optional<ffi::Array<MeasureCandidate>> GenerateMeasureCandidates() final;
264  void NotifyRunnerResults(const ffi::Array<MeasureCandidate>& measure_candidates,
265  const ffi::Array<RunnerResult>& results);
266  SearchStrategy Clone() const final;
267  TVM_FFI_DECLARE_OBJECT_INFO_FINAL("s_tir.meta_schedule.PySearchStrategy", PySearchStrategyNode,
269 };
270 
271 } // namespace meta_schedule
272 } // namespace s_tir
273 } // namespace tvm
274 
275 #endif // TVM_S_TIR_META_SCHEDULE_SEARCH_STRATEGY_H_
Managed reference to MeasureCandidateNode.
Definition: measure_candidate.h:55
The python side customizable class for measure candidate generation.
Definition: search_strategy.h:224
SearchStrategy::FGenerateMeasureCandidates FGenerateMeasureCandidates
Definition: search_strategy.h:229
SearchStrategy::FInitializeWithTuneContext FInitializeWithTuneContext
Definition: search_strategy.h:226
void PreTuning(int max_trials, int num_trials_per_iter, const ffi::Array< s_tir::Schedule > &design_spaces, const ffi::Optional< Database > &database, const ffi::Optional< CostModel > &cost_model) final
Pre-tuning for the search strategy.
static void RegisterReflection()
Definition: search_strategy.h:246
SearchStrategy::FPostTuning FPostTuning
Definition: search_strategy.h:228
void NotifyRunnerResults(const ffi::Array< MeasureCandidate > &measure_candidates, const ffi::Array< RunnerResult > &results)
Update the search strategy with measurement results.
FGenerateMeasureCandidates f_generate_measure_candidates
The packed function to the GenerateMeasureCandidates method.
Definition: search_strategy.h:240
void InitializeWithTuneContext(const TuneContext &context) final
Initialize the search strategy with tuning context.
SearchStrategy Clone() const final
Clone the search strategy.
FInitializeWithTuneContext f_initialize_with_tune_context
The packed function to the InitializeWithTuneContext method.
Definition: search_strategy.h:234
SearchStrategy::FClone FClone
Definition: search_strategy.h:231
FNotifyRunnerResults f_notify_runner_results
The packed function to the NotifyRunnerResults method.
Definition: search_strategy.h:242
void PostTuning() final
Post-tuning for the search strategy.
FPostTuning f_post_tuning
The packed function to the PostTuning method.
Definition: search_strategy.h:238
TVM_FFI_DECLARE_OBJECT_INFO_FINAL("s_tir.meta_schedule.PySearchStrategy", PySearchStrategyNode, SearchStrategyNode)
FPreTuning f_pre_tuning
The packed function to the PreTuning method.
Definition: search_strategy.h:236
FClone f_clone
The packed function to the Clone method.
Definition: search_strategy.h:244
SearchStrategy::FNotifyRunnerResults FNotifyRunnerResults
Definition: search_strategy.h:230
SearchStrategy::FPreTuning FPreTuning
Definition: search_strategy.h:227
ffi::Optional< ffi::Array< MeasureCandidate > > GenerateMeasureCandidates() final
Generate measure candidates from design spaces for measurement.
Managed reference to RunnerResultNode.
Definition: runner.h:95
The search strategy for measure candidates generation.
Definition: search_strategy.h:78
virtual ~SearchStrategyNode()=default
Virtual destructor.
virtual ffi::Optional< ffi::Array< MeasureCandidate > > GenerateMeasureCandidates()=0
Generate measure candidates from design spaces for measurement.
static constexpr const bool _type_mutable
Definition: search_strategy.h:133
virtual void NotifyRunnerResults(const ffi::Array< MeasureCandidate > &measure_candidates, const ffi::Array< RunnerResult > &results)=0
Update the search strategy with measurement results.
TVM_FFI_DECLARE_OBJECT_INFO("s_tir.meta_schedule.SearchStrategy", SearchStrategyNode, Object)
virtual void PreTuning(int max_trials, int num_trials_per_iter, const ffi::Array< s_tir::Schedule > &design_spaces, const ffi::Optional< Database > &database, const ffi::Optional< CostModel > &cost_model)=0
Pre-tuning for the search strategy.
virtual SearchStrategy Clone() const =0
Clone the search strategy.
virtual void PostTuning()=0
Post-tuning for the search strategy.
virtual void InitializeWithTuneContext(const TuneContext &context)=0
Initialize the search strategy with tuning context.
Managed reference to SearchStrategyNode.
Definition: search_strategy.h:141
ffi::TypedFunction< ffi::Optional< ffi::Array< MeasureCandidate > >()> FGenerateMeasureCandidates
The function type of GenerateMeasureCandidates method.
Definition: search_strategy.h:161
static SearchStrategy PySearchStrategy(FInitializeWithTuneContext f_initialize_with_tune_context, FPreTuning f_pre_tuning, FPostTuning f_post_tuning, FGenerateMeasureCandidates f_generate_measure_candidates, FNotifyRunnerResults f_notify_runner_results, FClone f_clone)
Create a search strategy with customized methods on the python-side.
ffi::TypedFunction< void()> FPostTuning
The function type of PostTuning method.
Definition: search_strategy.h:155
ffi::TypedFunction< void(int max_trials, int num_trials_per_iter, const ffi::Array< s_tir::Schedule > &, const ffi::Optional< Database > &, const ffi::Optional< CostModel > &)> FPreTuning
The function type of PreTuning method.
Definition: search_strategy.h:153
ffi::TypedFunction< void(const ffi::Array< MeasureCandidate > &, const ffi::Array< RunnerResult > &)> FNotifyRunnerResults
The function type of NotifyRunnerResults method.
Definition: search_strategy.h:167
ffi::TypedFunction< SearchStrategy()> FClone
The function type of Clone method.
Definition: search_strategy.h:172
ffi::TypedFunction< void(const TuneContext &)> FInitializeWithTuneContext
The function type of InitializeWithTuneContext method.
Definition: search_strategy.h:147
static SearchStrategy ReplayFunc()
Constructor of replay func search strategy.
static SearchStrategy EvolutionarySearch(int population_size, double init_measured_ratio, int init_min_unmeasured, int max_fail_count, int genetic_num_iters, double genetic_mutate_prob, int genetic_max_fail_count, double eps_greedy)
Constructor of evolutionary search strategy.
TVM_FFI_DEFINE_OBJECT_REF_METHODS_NULLABLE(SearchStrategy, ObjectRef, SearchStrategyNode)
static SearchStrategy ReplayTrace(int max_fail_count)
Constructor of replay trace search strategy.
Managed reference to TuneContextNode.
Definition: tune_context.h:99
Definition: repr_printer.h:91
Performance counters for profiling via the PAPI library.
Definition: analyzer.h:37
A managed object in the TVM runtime.