24 #ifndef TVM_TOPI_TRANSFORM_H_
25 #define TVM_TOPI_TRANSFORM_H_
43 #include <unordered_set>
56 using namespace topi::detail;
77 std::string tag =
"") {
79 auto _axis = size_t(axis);
80 CHECK_LT(_axis, x->shape.size()) <<
"axis must be a valid dimension index of x.";
81 CHECK_EQ(x->shape.size() - _axis, window_shape.
size())
82 <<
"There must be a window shape for every dimension of x "
83 <<
"over which we are sliding the window.";
84 CHECK_EQ(strides.
size(), window_shape.
size()) <<
"Windows and strides should be the same length.";
89 for (
size_t i = 0; i < _axis; ++i) {
95 for (
size_t i = 0; i < window_shape.
size(); ++i) {
97 auto dim_len = x->shape[_axis + i];
99 auto window_len = window_shape[i];
101 auto stride = strides[i];
107 for (
size_t i = 0; i < window_shape.
size(); ++i) {
111 ICHECK(new_shape.
size() == _axis + 2 * window_shape.
size());
120 for (
size_t i = 0; i < _axis; ++i) {
124 for (
size_t i = 0; i < window_shape.
size(); ++i) {
126 auto window_idx = indices[_axis + i];
128 auto idx_within_window = indices[_axis + window_shape.
size() + i];
130 auto stride = strides[i];
132 idx.
push_back(window_idx * stride + idx_within_window);
135 ICHECK(idx.
size() == x->shape.size());
155 std::string name =
"T_expand_dims", std::string tag =
kBroadcast) {
156 int ndim =
static_cast<int>(x->shape.size());
157 ICHECK(-ndim - 1 <= axis && axis <= ndim)
158 <<
"expand_dims only accepts `axis` in [-data.ndim - 1, data.ndim]"
159 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
160 ICHECK(num_newaxis >= 0) <<
"expand_dims only accepts `num_newaxis >= 0`"
161 <<
", but got num_newaxis = " << num_newaxis;
164 axis = ndim + axis + 1;
167 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
170 for (
size_t i = 0; i < static_cast<size_t>(num_newaxis); ++i) {
173 for (
size_t i = axis; i < x->shape.size(); ++i) {
181 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
184 for (
size_t i = axis + num_newaxis; i < indices.
size(); ++i) {
207 for (
int i =
static_cast<int>(x->shape.size()) - 1; i >= 0; --i) {
213 for (
size_t i = 0; i < axes.
size(); ++i) {
214 int axis =
static_cast<int>(axes[i]->value);
217 new_axis =
static_cast<int>(x->shape.size()) + axis;
218 axes.
Set(i, new_axis);
220 ICHECK((new_axis >= 0) && (new_axis <
static_cast<int>(x->shape.size())))
221 <<
"axis=" << axis <<
" is invalid for the " <<
static_cast<int>(x->shape.size())
222 <<
"-dimensional input tensor";
224 for (
size_t j = 0; j < axes.
size(); ++j) {
226 ICHECK(new_axis !=
static_cast<int>(axes[j]->value)) <<
"repeated axis in transpose";
235 std::vector<PrimExpr> idx;
236 for (
size_t i = 0; i < axes.
size(); ++i) {
239 for (
size_t i = 0; i < axes.
size(); ++i) {
240 int axis =
static_cast<int>(axes[i]->value);
241 idx[axis] = indices[i];
263 int batch_axis = 0, std::string name =
"T_reverse_sequence",
265 size_t src_tensor_dim = x->shape.size();
266 int seq_axis_inp = seq_axis;
269 size_t seq_lengths_dim = seq_lengths->shape.size();
270 int batch_axis_inp = batch_axis;
271 if (batch_axis < 0) {
272 batch_axis =
static_cast<int>(x->shape.size()) + batch_axis;
275 ICHECK(seq_lengths_dim == 1) <<
"seq_lengths should be 1D vector";
277 ICHECK(GetConstInt(seq_lengths->shape[0]) == GetConstInt(x->shape[batch_axis]))
278 <<
"For reverse_sequnece seq_lengths size should match with dimension of batch axis"
279 <<
", but got dimension of batch_axis = " << GetConstInt(x->shape[batch_axis])
280 <<
", and seq_length size = " << GetConstInt(seq_lengths->shape[0]);
282 ICHECK((0 <= batch_axis) && (batch_axis <
static_cast<int>(x->shape.size())))
283 <<
"batch_axis=" << batch_axis_inp <<
" is invalid for the "
284 <<
static_cast<int>(x->shape.size()) <<
"-dimensional input tensor";
288 seq_axis =
static_cast<int>(x->shape.size()) + seq_axis;
290 ICHECK((0 <= seq_axis) && (seq_axis <
static_cast<int>(x->shape.size())))
291 <<
"seq_axis=" << seq_axis_inp <<
" is invalid for the " <<
static_cast<int>(x->shape.size())
292 <<
"-dimensional input tensor";
296 for (
size_t i = 0; i < src_tensor_dim; ++i) {
297 if (i ==
static_cast<size_t>(seq_axis)) {
299 auto len = seq_lengths(indices[batch_axis]);
301 len <= 1 || len <= indices[i], indices[i],
302 if_then_else(len > x->shape[i], x->shape[i] - 1 - indices[i], len - 1 - indices[i]));
305 real_indices.
push_back(x->shape[i] - 1 - indices[i]);
311 return x(real_indices);
314 return compute(x->shape, func, name, tag);
329 auto x_shape = x->shape;
332 for (
const auto& ele : newshape) {
337 if (is_empty_shape(target_shape) || is_empty_shape(x->shape)) {
339 target_shape, [&](
const Array<Var>& indices) {
return tvm::cast(x->dtype, 0); }, name, tag);
344 return x(UnravelIndex(
364 auto x_shape = x->shape;
365 auto shape_shape =
shape->shape;
369 if (x_shape.size() != 0) {
375 std::vector<PrimExpr> indices_divs;
380 if (x_shape.size() != 0) {
381 index_val = x[indices[1]];
385 indices_divs.push_back(index_val);
386 for (
int v = GetConstInt(shape_shape[0]) - 1; v >= 0; --v) {
389 indices_divs.push_back(cur_val);
394 return compute(oshape, func, name, tag);
411 std::string name =
"T_squeeze", std::string tag =
kInjective) {
412 auto ndim = x->shape.size();
413 std::vector<int> axis_val;
415 for (
size_t i = 0; i < ndim; ++i) {
416 if (IsConstInt(x->shape[i]) && GetConstInt(x->shape[i]) == 1) {
417 axis_val.push_back(
static_cast<int>(i));
421 for (
size_t i = 0; i < axis.
size(); ++i) {
422 int64_t val = axis[i]->value;
424 val +=
static_cast<int>(x->shape.size());
426 if (IsConstInt(x->shape[val])) {
427 ICHECK_EQ(GetConstInt(x->shape[val]), 1) <<
"Dimension " << val <<
" must have size 1";
433 std::unordered_set<int> axis_set(axis_val.begin(), axis_val.end());
436 for (
size_t i = 0; i < ndim; ++i) {
437 if (axis_set.count(
static_cast<int>(i)) == 0) {
441 if (out_shape.
size() == 0 && atleast1d) {
450 for (
size_t i = 0; i < ndim; ++i) {
451 if (axis_set.count(
static_cast<int>(i)) == 0) {
452 real_indices.push_back(indices[i - flag]);
454 real_indices.push_back(0);
458 return x(real_indices);
475 int ndim =
static_cast<int>(inputs[0]->shape.
size());
476 ICHECK(-ndim <= axis && axis < ndim) <<
"concatenate only accepts `axis` in [-ndim, ndim)"
477 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
481 ICHECK_LT(axis, inputs[0]->
shape.size()) <<
"axis out of bounds";
484 for (
auto t : inputs) {
489 for (
size_t i = 1; i < axis_sizes.
size(); ++i) {
490 join_size += axis_sizes[i];
492 join_size = analyzer.
Simplify(join_size);
494 for (
size_t i = 0; i < inputs[0]->shape.
size(); ++i) {
495 out_shape.
push_back(i ==
static_cast<size_t>(axis) ? join_size : inputs[0]->
shape[i]);
501 auto ret = inputs[0](indices);
502 auto ind = indices[axis];
503 for (
size_t i = 0; i < inputs.
size() - 1; ++i) {
504 ind -= axis_sizes[i];
507 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
511 for (
size_t i = axis + 1; i < indices.
size(); ++i) {
534 int ndim =
static_cast<int>(inputs[0]->shape.
size());
535 ICHECK(-ndim - 1 <= axis && axis <= ndim)
536 <<
"stack only accepts `axis` in [-ndim, ndim)"
537 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
541 ICHECK_LT(axis, inputs[0]->
shape.size() + 1) <<
"axis out of bounds";
543 const int stack_size =
static_cast<int>(inputs.
size());
545 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) out_shape.
push_back(inputs[0]->shape[i]);
547 for (
size_t i =
static_cast<size_t>(axis); i < static_cast<size_t>(ndim); ++i)
548 out_shape.
push_back(inputs[0]->shape[i]);
554 for (
size_t i = 0; i < indices.
size(); ++i)
555 if (i !=
static_cast<size_t>(axis)) idx.
push_back(indices[i]);
556 auto ind = indices[axis];
557 auto ret = inputs[0](idx);
558 for (
int i = 0; i < static_cast<int>(inputs.
size() - 1); ++i) {
579 std::string name =
"T_split", std::string tag =
kInjective) {
581 axis +=
static_cast<int>(x->shape.size());
583 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
585 auto src_axis_size = x->shape[axis];
586 std::vector<PrimExpr> begin_ids;
587 begin_ids.push_back(0);
589 for (
auto idx : split_indices) {
591 auto back_node = begin_ids.back().as<
IntImmNode>();
592 if (idx_node && back_node) {
593 ICHECK_GT(idx_node->value, back_node->
value) <<
"split_indices must be sorted";
595 begin_ids.push_back(idx);
599 for (
size_t i = 0; i < begin_ids.size(); ++i) {
601 if (i == begin_ids.size() - 1) {
602 out_axis_size = src_axis_size - begin_ids[i];
604 out_axis_size = begin_ids[i + 1] - begin_ids[i];
608 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
609 shape.push_back(x->shape[i]);
611 shape.push_back(out_axis_size);
612 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
613 shape.push_back(x->shape[i]);
620 for (
size_t i = 0; i < begin_ids.size(); ++i) {
624 auto begin = begin_ids[i];
626 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
629 real_indices.
push_back(indices[axis] + begin);
630 for (
size_t j = axis + 1; j < indices.
size(); ++j) {
634 return x(real_indices);
653 if (!(index->IsInstance<
tvm::IntImmNode>() && GetConstInt(index) >= 0)) {
661 int64_t begin_range = stride < 0 ? -1 : 0;
662 int64_t end_range = stride < 0 ? extent - 1 : extent;
680 bool assume_inbound =
true) {
681 if (assume_inbound) {
682 return ceildiv(end - begin, stride);
709 std::string name =
"T_dynamic_strided_slice_with_axes", std::string tag =
kInjective) {
710 const size_t src_tensor_dim = x->shape.size();
711 ICHECK_EQ(begin.
size(), end.
size());
712 ICHECK_EQ(begin.
size(), strides.
size());
713 ICHECK_EQ(begin.
size(), axes.
size());
714 ICHECK_LE(begin.
size(), src_tensor_dim);
716 for (
const auto& axis_imm : axes) {
717 int axis = axis_imm->value;
718 ICHECK_LT(axis, src_tensor_dim);
724 for (
size_t i = 0; i < begin.
size(); i++) {
725 int axis = axes[i]->value;
727 analyzer.
Simplify(
GetLength(begin[i], end[i], strides[i], out_shape[axis], assume_inbound));
728 out_shape.
Set(axis, new_shape);
736 for (
size_t i = 0; i < begin.
size(); i++) {
737 int axis = axes[i]->value;
738 PrimExpr new_index = indices[axis] * strides[i] + begin[i];
739 real_indices.
Set(axis, new_index);
742 return x(real_indices);
763 bool assume_inbound =
true,
764 std::string name =
"T_dynamic_strided_slice",
766 const size_t src_tensor_dim = x->shape.size();
767 ICHECK_LE(begin.
size(), src_tensor_dim);
768 ICHECK_LE(end.
size(), src_tensor_dim);
769 ICHECK_LE(strides.
size(), src_tensor_dim);
770 ICHECK_EQ(begin.
size(), end.
size());
771 ICHECK_EQ(begin.
size(), strides.
size());
773 const size_t num_slice_axes = begin.
size();
777 for (
size_t i = 0; i < num_slice_axes; ++i) {
779 if (!begin[i]->IsInstance<ProducerLoadNode>() && !end[i]->IsInstance<ProducerLoadNode>() &&
780 !strides[i]->IsInstance<ProducerLoadNode>()) {
782 analyzer.
Simplify(
GetLength(begin[i], end[i], strides[i], x->shape[i], assume_inbound)));
788 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
796 for (
size_t i = 0; i < num_slice_axes; ++i) {
797 real_indices.
push_back(indices[i] * strides[i] +
tvm::min(begin[i], x->shape[i] - 1));
800 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
803 return x(real_indices);
824 bool assume_inbound =
true,
825 std::string name =
"T_strided_slice_dynamic",
827 DataType index_dtype = begin->shape[0]->dtype;
828 const int64_t num_dynamic_axes = begin->shape[0].
as<
IntImmNode>()->value;
833 for (int64_t i = 0; i < num_dynamic_axes; ++i) {
860 std::vector<int64_t> begin_vec, end_vec, strides_vec;
861 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
862 auto begin_canonicalized = StridedSliceCanonicalizeBegin(ishape, begin_vec, strides_vec, axes,
863 begin[0]->dtype, slice_mode);
865 begin_canonicalized,
true);
887 std::string name =
"T_strided_slice_with_axes",
889 const size_t src_tensor_dim = x->shape.size();
890 ICHECK(axes.
size() <= src_tensor_dim);
893 std::vector<int64_t> begin_vec, end_vec, strides_vec;
894 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
896 auto begin_expr = StridedSliceCanonicalizeBegin(x->shape, begin_vec, strides_vec, axes,
897 begin[0]->dtype, slice_mode);
899 slice_mode, begin_expr);
905 for (
size_t i = 0; i < out_shape.size(); ++i) real_indices.
push_back(indices[i]);
906 for (
size_t i = 0; i < axes.
size(); ++i) {
907 auto stride =
make_const(strides[i].dtype(), strides_vec[i]);
908 PrimExpr ind = indices[axes[i].IntValue()] * stride + begin_expr[i];
909 real_indices.
Set(axes[i].IntValue(), ind);
911 return x(real_indices);
932 std::string name =
"T_strided_slice", std::string tag =
kInjective) {
933 size_t src_tensor_dim =
static_cast<size_t>(x->shape.size());
935 for (
size_t i = 0; i < src_tensor_dim; ++i) axes.
push_back(i);
945 for (
size_t i = strides.
size(); i < src_tensor_dim; ++i) {
948 for (
size_t i = begin.
size(); i < src_tensor_dim; ++i) {
949 begin_full.
push_back(GetConstInt(strides_full[i]) > 0 ? zero : max_range);
951 for (
size_t i = end.
size(); i < src_tensor_dim; ++i) {
952 end_full.
push_back(GetConstInt(strides_full[i]) < 0 ? zero : max_range);
972 std::string name =
"T_split_sections",
975 axis +=
static_cast<int>(x->shape.size());
977 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
979 auto src_axis_size = x->shape[axis];
981 ICHECK_GT(num_sections, 0) <<
"Slice count must be > 0";
983 if (
auto node = src_axis_size.as<
IntImmNode>()) {
984 ICHECK_EQ(node->value % num_sections, 0)
985 <<
"num_sections must be an integer factor of the size of axis " << axis <<
" ("
986 << node->value <<
")";
990 auto seg_size =
indexdiv(src_axis_size, num_sections);
991 for (
int i = 0; i < num_sections; ++i) {
998 return split(x, split_indices, axis, name, tag);
1014 std::string mode =
"clip", std::string name =
"T_take",
1019 for (
size_t i = 0; i < a_shape.
size(); ++i) {
1020 a_size = a_size * a_shape[i];
1023 if (mode ==
"clip") {
1028 return a(UnravelIndex(idx, a_shape));
1031 }
else if (mode ==
"fast") {
1032 LOG(WARNING) <<
"Fast mode segfaults when there are out-of-bounds indices. "
1033 "Make sure input indices are in bound";
1036 [&](
const Array<Var>& out_index) {
return a(UnravelIndex(indices(out_index), a_shape)); },
1042 auto idx =
truncmod(
truncmod(indices(out_index), a_size) + a_size, a_size);
1043 return a(UnravelIndex(idx, a_shape));
1062 int axis, std::string name =
"T_sequence_mask",
1064 ICHECK(axis == 0 || axis == 1) <<
"axis must be either 0 or 1";
1065 ICHECK_EQ(valid_length->shape.size(), 1) <<
"valid_length must have ndim=1, i.e., (batch_size,).";
1066 auto length_dim = data->shape[axis];
1067 auto batch_dim = data->shape[1 - axis];
1073 auto tid = out_index[axis];
1074 auto bid = out_index[1 - axis];
1100 std::string mode =
"clip", std::string name =
"T_take",
1103 axis +=
static_cast<int>(a->shape.size());
1105 ICHECK_GE(axis, 0) <<
"axis out of bounds";
1106 ICHECK_LT(axis, a->shape.size()) <<
"axis out of bounds";
1107 auto axis_dim = a->shape[axis];
1110 return tensor->shape;
1116 int indices_len =
static_cast<int>(indices_shape.size());
1118 int batch_dims_ = batch_dims;
1119 if (batch_dims_ != 0) {
1120 ICHECK_GE(batch_dims_, -indices_len) <<
"batch_dims out of bounds";
1121 ICHECK_LE(batch_dims_, indices_len) <<
"batch_dims out of bounds";
1123 if (batch_dims_ < 0) {
1124 batch_dims_ = indices_len + batch_dims_;
1127 ICHECK_LT(batch_dims_, a->shape.size()) <<
"batch_dims out of bounds";
1128 ICHECK_LE(batch_dims_, axis) <<
"batch_dims must be less than or equal to axis";
1129 for (
int i = 0; i < batch_dims_; ++i) {
1130 auto addr1 = a->shape[i];
1131 auto addr2 = indices_shape[i];
1132 auto v1 =
static_cast<IntImm*
>(&addr1)->get()->value;
1133 auto v2 =
static_cast<IntImm*
>(&addr2)->get()->value;
1134 ICHECK_EQ(v1, v2) <<
"a.shape[" << i <<
"] should be equal to indices.shape[" << i <<
"]";
1142 for (
int i = 0; i < batch_dims_; ++i) {
1145 for (
int i = batch_dims_; i < axis; ++i) {
1148 for (
int i = batch_dims_; i < indices_len; ++i) {
1151 for (
size_t i = axis + 1; i < a->shape.size(); ++i) {
1156 if (
auto tensor = indices.
as<
Tensor>()) {
1157 return tensor.value()(indices_position);
1158 }
else if (
auto prim = indices.
as<
PrimExpr>()) {
1159 ICHECK_EQ(indices_position.size(), 0);
1160 return prim.value();
1162 LOG(FATAL) <<
"Variant did not contain either allowed type";
1166 if (mode ==
"clip") {
1167 if (batch_dims_ == 0) {
1172 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1173 indices_position.
push_back(out_index[j]);
1176 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1179 auto idx =
tvm::min(
tvm::max(0, get_index(indices_position)), axis_dim - 1);
1181 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1184 return a(real_indices);
1192 for (
size_t j = 0; j < static_cast<size_t>(batch_dims_); ++j) {
1193 indices_position.
push_back(out_index[j]);
1195 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len - batch_dims_); ++j) {
1196 indices_position.
push_back(out_index[j]);
1199 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1202 auto idx =
tvm::min(
tvm::max(0, get_index(indices_position)), axis_dim - 1);
1204 for (
size_t j = axis + indices_len - batch_dims_; j < out_index.
size(); ++j) {
1207 return a(real_indices);
1211 }
else if (mode ==
"fast") {
1216 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1217 indices_position.
push_back(out_index[j]);
1220 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1223 real_indices.
push_back(get_index(indices_position));
1224 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1227 return a(real_indices);
1235 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1236 indices_position.
push_back(out_index[j]);
1239 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1242 auto idx =
truncmod(
truncmod(get_index(indices_position), axis_dim) + axis_dim, axis_dim);
1244 for (
size_t j = axis + indices_len; j < out_index.
size(); ++j) {
1247 return a(real_indices);
1265 std::string name =
"T_where", std::string tag =
kBroadcast) {
1266 ICHECK_EQ(x->dtype, y->dtype) <<
"x and y must have the same dtype: " << x->dtype <<
" vs "
1268 auto get_out_shape = [&]() {
1269 auto bh1 = detail::BroadcastShape(x->shape, y->shape);
1270 Array<PrimExpr> common_shape1(bh1.common_shape.begin(), bh1.common_shape.end());
1271 auto bh2 = detail::BroadcastShape(condition->shape, common_shape1);
1272 Array<PrimExpr> common_shape2(bh2.common_shape.begin(), bh2.common_shape.end());
1273 return common_shape2;
1276 auto oshape = get_out_shape();
1278 auto c_bh = detail::BroadcastShape(condition->shape, oshape);
1279 auto x_bh = detail::BroadcastShape(x->shape, oshape);
1280 auto y_bh = detail::BroadcastShape(y->shape, oshape);
1283 auto c = condition(InputIndexFromBroadcast(ovars, condition, c_bh.vars1, c_bh.all_vars));
1284 auto true_val = x(InputIndexFromBroadcast(ovars, x, x_bh.vars1, x_bh.all_vars));
1285 auto false_val = y(InputIndexFromBroadcast(ovars, y, y_bh.vars1, y_bh.all_vars));
1289 return compute(oshape, select, name, tag);
1306 int ndim =
static_cast<int>(x->shape.size());
1307 ICHECK(-ndim - 1 <= axis && axis <= ndim)
1308 <<
"repeat only accepts `axis` in [-data.ndim - 1, data.ndim]"
1309 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
1310 ICHECK(repeats >= 1) <<
"repeat only accepts `repeats >= 1`"
1311 <<
", but got repeats = " << repeats;
1317 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1320 new_shape.
push_back(repeats * x->shape[axis]);
1321 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
1329 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1333 for (
size_t i = axis + 1; i < indices.
size(); ++i) {
1353 size_t ndim = x->shape.size();
1354 size_t rdim = reps.
size();
1355 size_t tdim = (ndim > rdim) ? ndim : rdim;
1360 for (
size_t i = 0; i < ndim; ++i) {
1364 }
else if (ndim > rdim) {
1365 for (
size_t i = 0; i < ndim; ++i) data_shape.
push_back(x->shape[i]);
1366 for (
size_t i = 0; i < (ndim - rdim); ++i) reps_shape.
push_back(1);
1367 for (
size_t i = 0; i < rdim; ++i) reps_shape.
push_back(reps[i]);
1369 for (
size_t i = 0; i < (rdim - ndim); ++i) data_shape.
push_back(1);
1370 for (
size_t i = 0; i < ndim; ++i) data_shape.
push_back(x->shape[i]);
1371 for (
size_t i = 0; i < rdim; ++i) reps_shape.
push_back(reps[i]);
1373 for (
size_t i = 0; i < tdim; ++i) new_shape.
push_back(data_shape[i] * reps_shape[i]);
1375 if (is_empty_shape(new_shape)) {
1384 for (
size_t i = 0; i < ndim; ++i) idx.
push_back(
indexmod(indices[i], x->shape[i]));
1386 for (
size_t i = 0; i < ndim; ++i)
1407 std::string name =
"T_tile", std::string tag =
kBroadcast) {
1408 size_t ndim = x->shape.size();
1409 if (is_empty_shape(new_shape)) {
1418 for (
size_t i = 0; i < ndim; ++i) {
1422 for (
size_t i = 0; i < ndim; ++i) {
1444 std::string name =
"T_gather", std::string tag =
kInjective) {
1445 size_t ndim_d = data->shape.size();
1446 size_t ndim_i = indices->shape.size();
1447 ICHECK_GE(ndim_d, 1) <<
"Cannot gather from a scalar.";
1448 ICHECK_EQ(ndim_d, ndim_i);
1453 ICHECK_LT(axis, ndim_d);
1455 size_t indices_dim_i =
static_cast<size_t>(GetConstInt(indices->shape[axis]));
1456 ICHECK_GE(indices_dim_i, 1);
1458 ICHECK(indices->dtype.is_int() || indices->dtype.is_uint());
1461 for (
size_t i = 0; i < ndim_i; ++i) {
1469 for (
size_t i = 0; i < ndim_i; ++i) {
1470 indices_position.
push_back(out_index[i]);
1473 for (
size_t i = 0; i < ndim_i; ++i) {
1474 if (i ==
static_cast<size_t>(axis)) {
1475 real_indices.
push_back(indices(indices_position));
1477 real_indices.
push_back(indices_position[i]);
1480 return data(real_indices);
1497 std::string name =
"T_gather_nd", std::string tag =
kInjective) {
1498 size_t ndim_d = data->shape.size();
1499 size_t ndim_i = indices->shape.size();
1500 ICHECK_GE(ndim_i, 1) <<
"indices tensor must have at least 1 dimensions";
1501 size_t indices_dim0 =
static_cast<size_t>(GetConstInt(indices->shape[0]));
1502 ICHECK_LE(indices_dim0, ndim_d) <<
"dim 0 of indices tensor must be no more "
1503 <<
"than dimensions of data tensor";
1505 for (
size_t i = 1; i < ndim_i; ++i) {
1508 for (
size_t i = indices_dim0 + batch_dims; i < ndim_d; ++i) {
1516 for (
size_t i = 0; i < ndim_i - 1; ++i) {
1517 indices_position.
push_back(out_index[i]);
1520 for (
size_t i = 0; i < static_cast<size_t>(batch_dims); ++i) {
1523 for (
size_t i = 0; i < indices_dim0; ++i) {
1525 if (indices->dtype.is_int() || indices->dtype.is_uint()) {
1526 real_indices.
push_back(indices(indices_position));
1531 if (real_indices.
size() == ndim_d) {
1532 return data(real_indices);
1534 for (
size_t i = ndim_i - 1; i < out_index.
size(); ++i) {
1537 return data(real_indices);
1558 bool trans_a =
false,
bool trans_b =
false,
1559 std::string name =
"T_matmul", std::string tag =
kMatMul) {
1563 return tvm::sum((trans_a ? A[k][i] : A[i][k]) * (trans_b ? B[j][k] : B[k][j]), {k});
1580 std::string name =
"T_tensordot", std::string tag =
kMatMul) {
1581 ICHECK_GE(A->shape.size(), axes);
1582 ICHECK_GE(B->shape.size(), axes);
1584 Array<PrimExpr> output_shape(A->shape.begin(), A->shape.end() + (-axes));
1585 for (
auto it = B->shape.begin() + axes; it != B->shape.end(); ++it) output_shape.
push_back(*it);
1588 for (
int i = 0; i < axes; ++i)
1591 auto func = [&A, &B, &iter_vars, axes](
const Array<Var>& input_indices) {
1593 input_indices.begin() + (A->shape.size() - axes));
1594 for (
auto& v : iter_vars) A_indices.
push_back(v);
1597 for (
auto& v : iter_vars) B_indices.
push_back(v);
1599 auto it = input_indices.begin() + (A->shape.size() - axes);
1600 for (; it != input_indices.end(); ++it) B_indices.
push_back(*it);
1603 if (iter_vars.empty()) {
1604 return A(A_indices) * B(B_indices);
1606 return sum(A(A_indices) * B(B_indices), iter_vars);
1610 return compute(output_shape, func, name, tag);
1628 ICHECK_EQ(A_axes.
size(), B_axes.
size());
1630 auto A_axes_val = GetConstIntValues(A_axes,
"A_axes");
1631 auto B_axes_val = GetConstIntValues(B_axes,
"B_axes");
1634 for (
unsigned i = 0; i < A->shape.size(); ++i)
1635 if (std::find(A_axes_val.begin(), A_axes_val.end(), i) == A_axes_val.end())
1637 for (
unsigned i = 0; i < B->shape.size(); ++i)
1638 if (std::find(B_axes_val.begin(), B_axes_val.end(), i) == B_axes_val.end())
1642 for (
unsigned i = 0; i < B_axes_val.size(); ++i)
1645 auto func = [&A, &B, &iter_vars, A_axes_val, B_axes_val](
const Array<Var>& input_indices) {
1648 for (
unsigned i = 0; i < A->shape.size(); ++i) {
1649 auto axes_pos = std::find(A_axes_val.begin(), A_axes_val.end(), i);
1650 if (axes_pos == A_axes_val.end()) {
1651 A_indices.
push_back(input_indices[idx_input++]);
1653 A_indices.
push_back(iter_vars[axes_pos - A_axes_val.begin()]);
1658 for (
unsigned i = 0; i < B->shape.size(); ++i) {
1659 auto axes_pos = std::find(B_axes_val.begin(), B_axes_val.end(), i);
1660 if (axes_pos == B_axes_val.end()) {
1661 B_indices.
push_back(input_indices[idx_input++]);
1663 B_indices.
push_back(iter_vars[axes_pos - B_axes_val.begin()]);
1666 return sum(A(A_indices) * B(B_indices), iter_vars);
1668 return compute(output_shape, func, name, tag);
1679 }
else if (is_all_int && analyzer.
CanProveLess(step, 0)) {
1687 num_elem = analyzer.
Simplify(num_elem);
1691 [&](
const Array<Var>& indices) {
return tvm::cast(dtype, start + step * indices[0]); }, name,
1706 std::string name =
"T_meshgrid", std::string tag =
kInjective) {
1707 const bool cartesian_indexing = indexing ==
"xy" && inputs.
size() >= 2;
1709 for (
size_t i = 0; i < inputs.
size(); ++i) {
1710 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1711 out_shape.
push_back(inputs[src_index]->
shape.size() == 0 ? 1 : inputs[src_index]->shape[0]);
1714 for (
size_t i = 0; i < inputs.
size(); ++i) {
1718 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1719 auto ndim = inputs[i]->GetShape().
size();
1722 real_indices = {indices[src_index]};
1724 return inputs[i](real_indices);
1742 const std::string& dst_layout,
1743 const std::string schedule_rule =
"None",
1744 const std::string name =
"T_layout_trans",
1746 Layout src_layout_struct(src_layout);
1747 Layout dst_layout_struct(dst_layout);
1749 if (src_layout_struct.
Equals(dst_layout_struct)) {
1753 ICHECK(src_layout_struct.
defined() && dst_layout_struct.
defined())
1754 <<
"cannot convert from/to undefined layout";
1757 ICHECK(layout_converter.defined())
1758 <<
"cannot convert from " << src_layout <<
" to " << dst_layout;
1760 Array<PrimExpr> dst_shape = layout_converter.ForwardShape(src->shape);
1764 {
"src_layout",
String(src_layout)},
1765 {
"dst_layout",
String(dst_layout)},
1766 {
"input_shape", src->shape}};
1772 Array<PrimExpr> src_indices = layout_converter.BackwardIndex(dst_indices_expr);
1774 for (
size_t i = 0; i < src.
ndim(); ++i) {
1775 in_range = in_range && (src_indices[i] < src->shape[i]);
1784 std::vector<std::string>* axes) {
1786 std::string axis =
"";
1787 for (
char c : std::string(layout)) {
1788 if (c >=
'A' && c <=
'z') {
1791 shape->push_back(factor);
1794 }
else if (c >=
'0' && c <=
'9') {
1795 factor = factor * 10 + c -
'0';
1796 if (!axis.empty()) {
1797 axes->push_back(axis);
1801 LOG(FATAL) <<
"Invalid layout " << layout;
1804 if (!axis.empty()) {
1805 axes->push_back(axis);
1820 const String& dst_layout,
1821 const String name =
"T_auto_scheduler_layout_trans",
1824 std::vector<std::string> src_axes;
1826 std::vector<std::string> dst_axes;
1835 for (
const std::string& src_axis : src_axes) {
1837 CHECK_EQ(dst_indices_expr.
size(), dst_axes.size());
1838 for (
size_t i = 0; i < dst_axes.size(); ++i) {
1839 if (dst_axes[i] == src_axis) {
1840 src_index = src_index * dst_shape[i] + dst_indices_expr[i];
1845 return src(src_indices);
1887 const String name =
"T_meta_schedule_layout_trans",
1891 iter_domain.
reserve(src->shape.size());
1892 for (
const PrimExpr& e : src->shape) {
1895 Array<PrimExpr> post_transform_shape = index_map->MapShape(src->shape, &analyzer);
1897 post_transform_shape,
1898 [src, inv = index_map.
Inverse(iter_domain, &analyzer),
1900 return src(inv->MapIndices(Array<PrimExpr>{indices.begin(), indices.end()}, &analyzer));
1915 int ndim =
static_cast<int>(src->shape.size());
1920 auto idx = indices[0];
1922 for (
int i = 0; i < ndim; ++i) {
1939 const std::string& name =
"ndarray_size",
1941 int ndim =
static_cast<int>(src->shape.size());
1947 for (
int i = 0; i < ndim; ++i) {
1948 ret *= src->shape[i];
1970 int depth,
int axis,
const DataType& dtype,
1972 const std::string name =
"T_one_hot",
const std::string tag =
kInjective) {
1973 int true_axis = (axis == -1) ? indices->shape.size() : axis;
1974 if (oshape.size() == 0) {
1975 int ndim = indices->shape.size() + 1;
1976 int indices_index = 0;
1977 for (
int i = 0; i < ndim; i++) {
1978 if (i == true_axis) {
1979 oshape.push_back(
Integer(depth));
1981 oshape.push_back(indices->shape[indices_index++]);
1992 for (
size_t i = 0; i < iter_vars.
size(); i++) {
1993 if (
static_cast<int>(i) == true_axis) {
1997 indices_indices.
push_back(iter_vars[i]);
2000 auto idx = iter_vars[true_axis];
2001 return tir::Select(indices(indices_indices) == idx, on_value_cast, off_value_cast);
2018 const std::string name =
"T_sparse_to_dense",
2020 ICHECK(sparse_indices->dtype.is_int()) <<
"sparse_indices only accepts integer values";
2021 ICHECK_LE(sparse_indices->shape.size(), 3)
2022 <<
"sparse_indices tensor should be 0D, 1D, or 2D only";
2023 ICHECK_LE(sparse_values->shape.size(), 2) <<
"sparse_values tensor should be 0D or 1D only";
2025 const auto rank_sparse_indices =
static_cast<int>(sparse_indices->shape.size());
2027 for (
auto l : output_shape) {
2034 if (0 == rank_sparse_indices) {
2036 }
else if (1 == rank_sparse_indices) {
2037 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
2041 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
2043 for (
int k = 0; k < GetConstInt(sparse_indices->shape[1]); k++) {
2044 PrimExpr comparision = indices[k] == sparse_indices[j][k];
2045 aggregate_condition = 0 == k ? comparision : aggregate_condition && comparision;
2068 bool super_diag_right_align,
bool sub_diag_right_align,
2069 const std::string name =
"T_matrix_set_diag",
2071 size_t ndim = input->shape.size() - 1;
2073 bool only_one_diagonal = k1 == k2;
2078 auto get_diag = [&]() {
2079 Array<PrimExpr> diagonal_indices;
2080 PrimExpr k, offset = 0;
2081 for (size_t i = 0; i < ndim - 1; i++) {
2082 diagonal_indices.push_back(iter_vars[i]);
2084 if (only_one_diagonal) {
2088 k = iter_vars[ndim] - iter_vars[ndim - 1];
2089 diagonal_indices.push_back(k2 - k);
2092 auto get_offset = [&](PrimExpr M, PrimExpr N) {
2094 return diagonal->shape[diagonal->shape.size() - 1] - if_then_else(M < N, M, N);
2096 offset = if_then_else(
2098 super_diag_right_align ? get_offset(input->shape[ndim] - k, input->shape[ndim - 1])
2100 sub_diag_right_align ? get_offset(input->shape[ndim], input->shape[ndim - 1] + k)
2103 diagonal_indices.push_back(if_then_else(k >= 0, iter_vars[ndim - 1], iter_vars[ndim]) +
2105 return diagonal(diagonal_indices);
2109 get_diag(), input(iter_vars)),
2124 const std::string name =
"advanced_index",
2126 ICHECK_LE(indices.
size(), data->shape.size()) <<
"too many indices for data!";
2131 broadcast_shape = indices[0]->shape;
2132 for (
size_t i = 1; i < indices.
size(); ++i) {
2133 auto bh = detail::BroadcastShape(broadcast_shape, indices[i]->
shape);
2134 broadcast_shape =
Array<PrimExpr>(bh.common_shape.begin(), bh.common_shape.end());
2136 if (indices.
size() == 1) {
2141 for (
size_t i = 0; i < indices.
size(); ++i) {
2146 for (
const auto& dim : broadcast_shape) {
2149 for (
size_t i = indices.
size(); i < data->
shape.size(); ++i) {
2157 for (
size_t i = 0; i < broadcast_shape.
size(); ++i) {
2161 for (
size_t i = 0; i < bindices.
size(); ++i) {
2162 real_indices.
push_back(bindices[i](tensor_indices));
2164 for (
size_t i = broadcast_shape.
size(); i < iter_var.
size(); ++i) {
2165 real_indices.push_back(iter_var[i]);
2168 return data(real_indices);
2178 std::string name =
"T_strided_slice_dynamic",
2180 const size_t num_dynamic_axes = x.
ndim();
2181 ICHECK_EQ(begin.
ndim(), 1);
2182 ICHECK_EQ(end.
ndim(), 1);
2183 ICHECK_EQ(strides.
ndim(), 1);
2184 const auto* len_begin = begin->shape[0].
as<
IntImmNode>();
2186 const auto* len_strides = strides->shape[0].
as<
IntImmNode>();
2189 ICHECK(len_strides);
2190 ICHECK_EQ(len_begin->value, num_dynamic_axes);
2191 ICHECK_EQ(len_end->
value, num_dynamic_axes);
2192 ICHECK_EQ(len_strides->
value, num_dynamic_axes);
2198 for (
size_t i = 0; i < num_dynamic_axes; ++i) {
2200 real_indices.
push_back(indices[i] * strides(ind) +
tvm::min(begin(ind), x->shape[i] - 1));
2202 return x(real_indices);
Algebra expression simplifications.
Broadcast op constructions.
Constant integer literals in the program.
Definition: expr.h:501
int64_t value
the Internal value.
Definition: expr.h:504
Managed reference class to IntImmNode.
Definition: expr.h:530
Container of constant int that adds more constructors.
Definition: expr.h:632
Reference to PrimExprNode.
Definition: expr.h:115
DataType dtype() const
Definition: expr.h:129
Range container
Definition: expr.h:725
static Range FromMinExtent(PrimExpr min, PrimExpr extent, Span span=Span())
construct a new range with min and extent The corresponding constructor is removed,...
Analyzer that contains bunch of sub-analyzers.
Definition: analyzer.h:629
bool CanProveGreaterEqual(const PrimExpr &expr, int64_t lower_bound)
Whether can we prove expr >= val.
PrimExpr Simplify(const PrimExpr &expr, int steps=2)
Simplify expr.
bool CanProveLess(const PrimExpr &expr, int64_t upper_bound)
Whether can we prove expr < val.
Array, container representing a contiguous sequence of ObjectRefs.
Definition: array.h:289
void reserve(int64_t n)
Make sure the list has the capacity of at least n.
Definition: array.h:569
Array< U > Map(F fmap) const
Helper function to apply a map function onto the array.
Definition: array.h:651
iterator end() const
Definition: array.h:390
void push_back(const T &item)
push a new item to the back of the list
Definition: array.h:457
void Set(int64_t i, T value)
set i-th element of the array.
Definition: array.h:621
iterator begin() const
Definition: array.h:387
size_t size() const
Definition: array.h:420
Runtime primitive data type.
Definition: data_type.h:43
static DataType Float(int bits, int lanes=1)
Construct an float type.
Definition: data_type.h:236
bool is_int() const
Definition: data_type.h:137
static DataType Int(int bits, int lanes=1)
Construct an int type.
Definition: data_type.h:219
Map container of NodeRef->NodeRef in DSL graph. Map implements copy on write semantics,...
Definition: map.h:1271
bool defined() const
Definition: object.h:552
const ObjectType * as() const
Try to downcast the internal Object to a raw pointer of a corresponding type.
Definition: object.h:910
Reference to string objects.
Definition: string.h:98
Node to represent a tensor.
Definition: tensor.h:68
Tensor structure representing a possible input, or intermediate computation result.
Definition: tensor.h:102
size_t ndim() const
Definition: tensor.h:214
Bijective function mapping for data layout transformation. Given two Layout, BijectiveLayout build an...
Definition: data_layout.h:332
Definition: index_map.h:176
IndexMap Inverse(Array< Range > initial_ranges, arith::Analyzer *analyzer) const
Generate the inverse mapping.
Managed reference to LayoutNode.
Definition: data_layout.h:123
bool Equals(const Layout &rhs) const
Whether the two layouts are equal.
Definition: data_layout.h:278
Managed reference to SelectNode.
Definition: expr.h:609
A variable node in the IR.
Definition: var.h:48
String name_hint
The hint to the variable name.
Definition: var.h:54
a named variable in TIR
Definition: var.h:89
Utility functions for handling constants in TVM expressions.
Layout expression to describe the data organization of a tensor. And BijectiveLayout to mapping two d...
Defines a remapping of buffer indices.
Tensor expression language DSL.
Definition: extracted_task.h:33
IterVar reduce_axis(Range dom, std::string name="rv")
Create a new IterVar for reduction operations.
Var var(std::string name_hint, DataType t=DataType::Int(32))
Construct a new Var expression.
Tensor compute(Array< PrimExpr > shape, FCompute fcompute, std::string name="tensor", std::string tag="", Map< String, ObjectRef > attrs={})
Construct a new tensor by computing over shape, using the computation rule: result_tensor[axis] = fco...
PrimExpr make_const(DataType t, ValueType value, Span span=Span())
Make a const value with certain data type.
Definition: op.h:962
DataType DefaultIndexType()
if TVM_INDEX_DEFAULT_I64 is set, return int64, otherwise return int32
Definition: buffer.h:42
PrimExpr make_zero(DataType t, Span span=Span())
Make a const zero expr.
Definition: op.h:976
te::Tensor dynamic_strided_slice(const te::Tensor &x, const te::Tensor &begin, const te::Tensor &end, const te::Tensor &strides, Array< PrimExpr > output_shape, std::string name="T_strided_slice_dynamic", std::string tag=kInjective)
Definition: transform.h:2175
PrimExpr GetLength(PrimExpr begin, PrimExpr end, PrimExpr stride, PrimExpr extent, bool assume_inbound=true)
Definition: transform.h:679
Tensor sequence_mask(const Tensor &data, const Tensor &valid_length, double mask_value, int axis, std::string name="T_sequence_mask", std::string tag=kInjective)
Mask the out-of-boundary elements of each sequence.
Definition: transform.h:1061
Tensor gather_nd(const Tensor &data, const Tensor &indices, int batch_dims=0, std::string name="T_gather_nd", std::string tag=kInjective)
Gather elements from a n-dimension array.
Definition: transform.h:1496
int64_t StaticCanonicalizeIndex(int64_t index, int64_t extent, int64_t stride)
Definition: transform.h:660
constexpr auto kBroadcast
Definition: tags.h:36
Tensor transpose(const Tensor &x, Array< Integer > axes, std::string name="T_transpose", std::string tag=kInjective)
Permute the dimensions of an array.
Definition: transform.h:203
Tensor arange(const PrimExpr &start, const PrimExpr &stop, const PrimExpr &step, DataType dtype, std::string name="T_arange", std::string tag=kInjective)
Definition: transform.h:1671
Tensor strided_slice(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, std::string slice_mode="end", std::string name="T_strided_slice", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:930
constexpr auto kInjective
Definition: tags.h:33
Tensor sliding_window(const Tensor &x, int axis, Array< Integer > window_shape, Array< Integer > strides, std::string name="T_sliding_window", std::string tag="")
Creates an operation to slide a window over the input x.
Definition: transform.h:75
Tensor reshape(const Tensor &x, Array< PrimExpr > newshape, std::string name="T_reshape", std::string tag=kInjective)
Reshape a tensor.
Definition: transform.h:327
Tensor one_hot(const Tensor &indices, const PrimExpr on_value, const PrimExpr off_value, int depth, int axis, const DataType &dtype, Array< PrimExpr > oshape=Array< PrimExpr >(), const std::string name="T_one_hot", const std::string tag=kInjective)
Returns a one-hot tensor where the locations repsented by indices take value on_value,...
Definition: transform.h:1969
Tensor dynamic_strided_slice(const Tensor &x, const Array< PrimExpr > &begin, const Array< PrimExpr > &end, const Array< PrimExpr > &strides, bool assume_inbound=true, std::string name="T_dynamic_strided_slice", std::string tag=kInjective)
strided_slice of a tensor where begin/end/stride can be mixed static and dynamic
Definition: transform.h:761
Tensor meta_schedule_layout_transform(const Tensor &src, const tir::IndexMap &index_map, const String name="T_meta_schedule_layout_trans", const String tag=kInjective)
Transform the meta-schedule generated layout according to TIR's IndexMap.
Definition: transform.h:1886
Array< Tensor > meshgrid(const Array< Tensor > &inputs, const std::string &indexing, std::string name="T_meshgrid", std::string tag=kInjective)
Produce grids by expanding input over dimensions defined by other inputs.
Definition: transform.h:1705
Tensor tile(const Tensor &x, Array< Integer > reps, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1351
PrimExpr CanonicalizeIndex(PrimExpr index, PrimExpr extent, PrimExpr stride)
Definition: transform.h:669
tvm::te::Tensor broadcast_to(const tvm::te::Tensor &t, const tvm::Array< tvm::PrimExpr > &output_shape, std::string name="T_broadcast_to", std::string tag=kBroadcast)
Creates an operation that broadcasts a tensor into a compatible shape according to numpy's rules.
Definition: broadcast.h:48
Tensor dyn_tile(const Tensor &x, Array< PrimExpr > new_shape, size_t rdim, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1406
Tensor adv_index(const Tensor &data, const Array< Tensor > &indices, const std::string name="advanced_index", const std::string tag=kInjective)
Numpy style advanced indexing with tensor.
Definition: transform.h:2123
Tensor concatenate(const Array< Tensor > &inputs, int axis=0, std::string name="T_concat", std::string tag=kInjective)
Join a sequence of tensors along an existing axis.
Definition: transform.h:473
void parse_auto_scheduler_layout(const String &layout, Array< PrimExpr > *shape, std::vector< std::string > *axes)
Utility function for auto_scheduler_layout_transform.
Definition: transform.h:1783
Tensor cast(const Tensor &x, DataType type, std::string name="T_cast", std::string tag=kElementWise)
Cast each element of x to the given type. If expr is scalar and type is a corresponding vector type,...
Definition: elemwise.h:281
Tensor expand_dims(const Tensor &x, int axis, int num_newaxis=1, std::string name="T_expand_dims", std::string tag=kBroadcast)
Creates an operation to insert new dimensions of length 1.
Definition: transform.h:154
Tensor squeeze(const Tensor &x, Array< Integer > axis, bool atleast1d=false, std::string name="T_squeeze", std::string tag=kInjective)
Remove size 1 dimensions from the shape of a tensor. The removed dimensions must have a constant size...
Definition: transform.h:410
Tensor sparse_to_dense(const Tensor &sparse_indices, const Array< PrimExpr > &output_shape, const Tensor &sparse_values, const PrimExpr &default_value, const std::string name="T_sparse_to_dense", const std::string tag=kInjective)
Get a dense tensor.
Definition: transform.h:2016
Tensor unravel_index(const Tensor &x, const Tensor &shape, std::string name="T_unravel", std::string tag=kInjective)
Converts a flat index or array of flat indices into a tuple of coordinate arrays.
Definition: transform.h:362
Tensor auto_scheduler_layout_transform(const Tensor &src, const String &src_layout, const String &dst_layout, const String name="T_auto_scheduler_layout_trans", const String tag=kInjective)
Transform the auto-scheduler generated layout according to src_layout and dst_layout.
Definition: transform.h:1819
Tensor ndarray_size(const Tensor &src, const DataType &dtype, const std::string &name="ndarray_size", const std::string &tag=kInjective)
Get the size of input tensor.
Definition: transform.h:1938
Tensor layout_transform(const Tensor &src, const std::string &src_layout, const std::string &dst_layout, const std::string schedule_rule="None", const std::string name="T_layout_trans", const std::string tag=kInjective)
Transform the layout according to src_layout and dst_layout.
Definition: transform.h:1741
Tensor take(const Tensor &a, const Tensor &indices, int batch_dims, std::string mode="clip", std::string name="T_take", std::string tag=kInjective)
Take elements from an flattened input array when axis is None.
Definition: transform.h:1013
constexpr auto kMatMul
Definition: tags.h:37
Tensor reverse_sequence(const Tensor &x, const Tensor &seq_lengths, int seq_axis=1, int batch_axis=0, std::string name="T_reverse_sequence", std::string tag=kInjective)
Reverse the tensor for variable length slices. Input is first sliced along batch axis and then elemen...
Definition: transform.h:262
Tensor sum(const Tensor &data, const Array< Integer > &axis, bool keepdims=false, bool atleast1d=false)
Creates an operation that sums array elements over a given axis.
Definition: reduction.h:326
Tensor tensordot(const Tensor &A, const tvm::te::Tensor &B, int axes=2, std::string name="T_tensordot", std::string tag=kMatMul)
A generalization of matrix multiplication to tensors.
Definition: transform.h:1579
Tensor dynamic_strided_slice_with_axes(const Tensor &x, const Array< PrimExpr > &begin, const Array< PrimExpr > &end, const Array< PrimExpr > &strides, const Array< Integer > &axes, bool assume_inbound=true, std::string name="T_dynamic_strided_slice_with_axes", std::string tag=kInjective)
strided_slice of a tensor where begin/end/stride can be mixed static and dynamic
Definition: transform.h:706
Tensor stack(const Array< Tensor > &inputs, int axis=0, std::string name="T_stack", std::string tag=kInjective)
Join a sequence of tensors along a new axis.
Definition: transform.h:532
Array< Tensor > split_sections(const Tensor &x, int num_sections, int axis, std::string name="T_split_sections", std::string tag=kInjective)
Split a tensor into a number of sub-tensors.
Definition: transform.h:971
Tensor strided_slice_with_axes(const Tensor &x, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, std::string slice_mode="end", std::string name="T_strided_slice_with_axes", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:884
PrimExpr DynamicCanonicalizeIndex(PrimExpr index, PrimExpr extent, PrimExpr stride)
Definition: transform.h:642
tvm::te::Tensor matmul(const tvm::te::Tensor &A, const tvm::te::Tensor &B, bool trans_a=false, bool trans_b=false, std::string name="T_matmul", std::string tag=kMatMul)
Creates an operation that calculates a matrix multiplication (row-major notation): A(i,...
Definition: transform.h:1557
Tensor matrix_set_diag(const Tensor &input, const Tensor &diagonal, int k1, int k2, bool super_diag_right_align, bool sub_diag_right_align, const std::string name="T_matrix_set_diag", const std::string tag=kInjective)
Returns a tensor with the diagonal of input tensor replaced with the provided diagonals.
Definition: transform.h:2067
Tensor where(const Tensor &condition, const Tensor &x, const Tensor &y, std::string name="T_where", std::string tag=kBroadcast)
Return the elements, either from x or y, depending on the condition.
Definition: transform.h:1264
Tensor shape(const Tensor &src, DataType dtype, const std::string name="T_shape", const std::string tag=kInjective)
Get the shape of input tensor.
Definition: transform.h:1913
Tensor gather(const Tensor &data, int axis, const Tensor &indices, std::string name="T_gather", std::string tag=kInjective)
Gather values along given axis from given indices.
Definition: transform.h:1443
Array< Tensor > split(const Tensor &x, Array< PrimExpr > split_indices, int axis, std::string name="T_split", std::string tag=kInjective)
Split a tensor into multiple sub-tensors.
Definition: transform.h:578
Tensor repeat(const Tensor &x, int repeats, int axis, std::string name="T_repeat", std::string tag=kBroadcast)
Creates an operation to repeat elements of an array.
Definition: transform.h:1304
Array< PrimExpr > StridedSliceOutputShape(const Array< PrimExpr > &ishape, const Array< Integer > &begin, const Array< Integer > &end, const Array< Integer > &strides, const Array< Integer > &axes, const std::string &slice_mode)
Calculate the output shape of strided_slice, the entry point for Relay type relation.
Definition: transform.h:856
runtime implementation for LibTorch/TorchScript.
Definition: analyzer.h:36
PrimExpr ceildiv(PrimExpr a, PrimExpr b, Span span=Span())
compute ceil(a / b)
PrimExpr ret(PrimExpr value, Span span=Span())
Return the value.
PrimExpr max(PrimExpr a, PrimExpr b, Span span=Span())
take maximum of two values
PrimExpr truncmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder of truncdiv
PrimExpr if_then_else(PrimExpr cond, PrimExpr true_value, PrimExpr false_value, Span span=Span())
Conditional expression.
PrimExpr cast(const DataType &t, PrimExpr value, Span span=Span())
cast value to type.
PrimExpr max_value(const DataType &dtype, Span span=Span())
PrimExpr ceil(PrimExpr x, Span span=Span())
Calculate ceil(x)
PrimExpr indexdiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b) where a and b are non-negative.
PrimExpr min(PrimExpr a, PrimExpr b, Span span=Span())
take minimum of two values
PrimExpr indexmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder floor(a / b) where a and b are non-negative.
PrimExpr floordiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b)
PrimExpr sum(PrimExpr source, Array< tir::IterVar > axis, Array< PrimExpr > init={}, Span span=Span())
sum of source expression over axis
Operation node can generate one or multiple Tensors.
Index ravel and unraval operations.
Utility functions for strided_slice op.
Utility functions for handling tensor.
Common operators defined for Expr.