24 #ifndef TVM_TOPI_TRANSFORM_H_
25 #define TVM_TOPI_TRANSFORM_H_
43 #include <unordered_set>
57 using namespace topi::detail;
77 ffi::Array<Integer> strides, std::string name =
"T_sliding_window",
78 std::string tag =
"") {
80 auto _axis = size_t(axis);
81 CHECK_LT(_axis, x->shape.size()) <<
"axis must be a valid dimension index of x.";
82 CHECK_EQ(x->shape.size() - _axis, window_shape.size())
83 <<
"There must be a window shape for every dimension of x "
84 <<
"over which we are sliding the window.";
85 CHECK_EQ(strides.size(), window_shape.size()) <<
"Windows and strides should be the same length.";
88 ffi::Array<PrimExpr> new_shape;
90 for (
size_t i = 0; i < _axis; ++i) {
91 new_shape.push_back(x->shape[i]);
96 for (
size_t i = 0; i < window_shape.size(); ++i) {
98 auto dim_len = x->shape[_axis + i];
100 auto window_len = window_shape[i];
102 auto stride = strides[i];
104 new_shape.push_back(
floordiv(dim_len - (window_len - 1) + stride - 1, stride));
108 for (
size_t i = 0; i < window_shape.size(); ++i) {
109 new_shape.push_back(window_shape[i]);
112 ICHECK(new_shape.size() == _axis + 2 * window_shape.size());
116 [&](
const ffi::Array<Var>& indices) {
118 ffi::Array<PrimExpr> idx;
121 for (
size_t i = 0; i < _axis; ++i) {
122 idx.push_back(indices[i]);
125 for (
size_t i = 0; i < window_shape.size(); ++i) {
127 auto window_idx = indices[_axis + i];
129 auto idx_within_window = indices[_axis + window_shape.size() + i];
131 auto stride = strides[i];
133 idx.push_back(window_idx * stride + idx_within_window);
136 ICHECK(idx.size() == x->shape.size());
156 std::string name =
"T_expand_dims", std::string tag =
kBroadcast) {
157 int ndim =
static_cast<int>(x->shape.size());
158 ICHECK(-ndim - 1 <= axis && axis <= ndim)
159 <<
"expand_dims only accepts `axis` in [-data.ndim - 1, data.ndim]"
160 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
161 ICHECK(num_newaxis >= 0) <<
"expand_dims only accepts `num_newaxis >= 0`"
162 <<
", but got num_newaxis = " << num_newaxis;
165 axis = ndim + axis + 1;
167 ffi::Array<PrimExpr> new_shape;
168 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
169 new_shape.push_back(x->shape[i]);
171 for (
size_t i = 0; i < static_cast<size_t>(num_newaxis); ++i) {
172 new_shape.push_back(1);
174 for (
size_t i = axis; i < x->shape.size(); ++i) {
175 new_shape.push_back(x->shape[i]);
180 [&](
const ffi::Array<Var>& indices) {
181 ffi::Array<PrimExpr> idx;
182 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
183 idx.push_back(indices[i]);
185 for (
size_t i = axis + num_newaxis; i < indices.size(); ++i) {
186 idx.push_back(indices[i]);
205 std::string name =
"T_transpose", std::string tag =
kInjective) {
206 ffi::Array<Integer> axes = opt_axes.value_or({});
207 if (axes.size() == 0) {
208 for (
int i =
static_cast<int>(x->shape.size()) - 1; i >= 0; --i) {
213 ffi::Array<PrimExpr> new_shape;
214 for (
size_t i = 0; i < axes.size(); ++i) {
215 int axis =
static_cast<int>(axes[i]->value);
218 new_axis =
static_cast<int>(x->shape.size()) + axis;
219 axes.Set(i, new_axis);
221 ICHECK((new_axis >= 0) && (new_axis <
static_cast<int>(x->shape.size())))
222 <<
"axis=" << axis <<
" is invalid for the " <<
static_cast<int>(x->shape.size())
223 <<
"-dimensional input tensor";
225 for (
size_t j = 0; j < axes.size(); ++j) {
227 ICHECK(new_axis !=
static_cast<int>(axes[j]->value)) <<
"repeated axis in transpose";
230 new_shape.push_back(x->shape[new_axis]);
235 [&](
const ffi::Array<Var>& indices) {
236 std::vector<PrimExpr> idx;
237 for (
size_t i = 0; i < axes.size(); ++i) {
240 for (
size_t i = 0; i < axes.size(); ++i) {
241 int axis =
static_cast<int>(axes[i]->value);
242 idx[axis] = indices[i];
264 int batch_axis = 0, std::string name =
"T_reverse_sequence",
266 size_t src_tensor_dim = x->shape.size();
267 int seq_axis_inp = seq_axis;
269 if (seq_lengths.defined()) {
270 size_t seq_lengths_dim = seq_lengths->shape.size();
271 int batch_axis_inp = batch_axis;
272 if (batch_axis < 0) {
273 batch_axis =
static_cast<int>(x->shape.size()) + batch_axis;
276 ICHECK(seq_lengths_dim == 1) <<
"seq_lengths should be 1D vector";
278 ICHECK(GetConstInt(seq_lengths->shape[0]) == GetConstInt(x->shape[batch_axis]))
279 <<
"For reverse_sequnece seq_lengths size should match with dimension of batch axis"
280 <<
", but got dimension of batch_axis = " << GetConstInt(x->shape[batch_axis])
281 <<
", and seq_length size = " << GetConstInt(seq_lengths->shape[0]);
283 ICHECK((0 <= batch_axis) && (batch_axis <
static_cast<int>(x->shape.size())))
284 <<
"batch_axis=" << batch_axis_inp <<
" is invalid for the "
285 <<
static_cast<int>(x->shape.size()) <<
"-dimensional input tensor";
289 seq_axis =
static_cast<int>(x->shape.size()) + seq_axis;
291 ICHECK((0 <= seq_axis) && (seq_axis <
static_cast<int>(x->shape.size())))
292 <<
"seq_axis=" << seq_axis_inp <<
" is invalid for the " <<
static_cast<int>(x->shape.size())
293 <<
"-dimensional input tensor";
295 auto func = [&](
const ffi::Array<Var>& indices) {
296 ffi::Array<PrimExpr> real_indices;
297 for (
size_t i = 0; i < src_tensor_dim; ++i) {
298 if (i ==
static_cast<size_t>(seq_axis)) {
299 if (seq_lengths.defined()) {
300 auto len = seq_lengths(indices[batch_axis]);
302 len <= 1 || len <= indices[i], indices[i],
303 if_then_else(len > x->shape[i], x->shape[i] - 1 - indices[i], len - 1 - indices[i]));
304 real_indices.push_back(idx);
306 real_indices.push_back(x->shape[i] - 1 - indices[i]);
309 real_indices.push_back(indices[i]);
312 return x(real_indices);
315 return compute(x->shape, func, name, tag);
329 std::string name =
"T_reshape", std::string tag =
kInjective) {
330 auto x_shape = x->shape;
331 ffi::Array<PrimExpr> target_shape;
333 for (
const auto& ele : newshape) {
334 target_shape.push_back(ele);
338 if (is_empty_shape(target_shape) || is_empty_shape(x->shape)) {
340 target_shape, [&](
const ffi::Array<Var>& indices) {
return tvm::cast(x->dtype, 0); }, name,
345 [&](
const ffi::Array<Var>& indices) {
346 return x(UnravelIndex(
347 RavelIndex(ffi::Array<PrimExpr>{indices.begin(), indices.end()}, target_shape),
367 auto x_shape = x->shape;
368 auto shape_shape =
shape->shape;
370 ffi::Array<PrimExpr> oshape;
371 oshape.push_back(shape_shape[0]);
372 if (x_shape.size() != 0) {
373 oshape.push_back(x_shape[0]);
376 auto func = [&](
const ffi::Array<Var>& indices) {
378 std::vector<PrimExpr> indices_divs;
383 if (x_shape.size() != 0) {
384 index_val = x[indices[1]];
388 indices_divs.push_back(index_val);
389 for (
int v = GetConstInt(shape_shape[0]) - 1; v >= 0; --v) {
392 indices_divs.push_back(cur_val);
397 return compute(oshape, func, name, tag);
414 bool atleast1d =
false, std::string name =
"T_squeeze",
416 auto ndim = x->shape.size();
417 std::vector<int> axis_val;
418 if (!opt_axes.has_value()) {
419 for (
size_t i = 0; i < ndim; ++i) {
420 if (IsConstInt(x->shape[i]) && GetConstInt(x->shape[i]) == 1) {
421 axis_val.push_back(
static_cast<int>(i));
425 ffi::Array<Integer> axis = *std::move(opt_axes);
426 for (
size_t i = 0; i < axis.size(); ++i) {
427 int64_t val = axis[i]->value;
429 val +=
static_cast<int>(x->shape.size());
431 if (IsConstInt(x->shape[val])) {
432 ICHECK_EQ(GetConstInt(x->shape[val]), 1) <<
"Dimension " << val <<
" must have size 1";
434 axis_val.push_back(val);
438 std::unordered_set<int> axis_set(axis_val.begin(), axis_val.end());
440 ffi::Array<PrimExpr> out_shape;
441 for (
size_t i = 0; i < ndim; ++i) {
442 if (axis_set.count(
static_cast<int>(i)) == 0) {
443 out_shape.push_back(x->shape[i]);
446 if (out_shape.size() == 0 && atleast1d) {
447 out_shape.push_back(1);
452 [&](
const ffi::Array<Var>& indices) {
453 ffi::Array<PrimExpr> real_indices;
455 for (
size_t i = 0; i < ndim; ++i) {
456 if (axis_set.count(
static_cast<int>(i)) == 0) {
457 real_indices.push_back(indices[i - flag]);
459 real_indices.push_back(0);
463 return x(real_indices);
479 std::string name =
"T_concat", std::string tag =
kInjective) {
480 int ndim =
static_cast<int>(inputs[0]->shape.size());
481 ICHECK(-ndim <= axis && axis < ndim) <<
"concatenate only accepts `axis` in [-ndim, ndim)"
482 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
486 ICHECK_LT(axis, inputs[0]->
shape.size()) <<
"axis out of bounds";
488 ffi::Array<PrimExpr> axis_sizes;
489 for (
auto t : inputs) {
490 axis_sizes.push_back(t->shape[axis]);
494 for (
size_t i = 1; i < axis_sizes.size(); ++i) {
495 join_size += axis_sizes[i];
497 join_size = analyzer.
Simplify(join_size);
498 ffi::Array<PrimExpr> out_shape;
499 for (
size_t i = 0; i < inputs[0]->shape.size(); ++i) {
500 out_shape.push_back(i ==
static_cast<size_t>(axis) ? join_size : inputs[0]->
shape[i]);
505 [&](
const ffi::Array<Var>& indices) {
506 auto ret = inputs[0](indices);
507 auto ind = indices[axis];
508 for (
size_t i = 0; i < inputs.size() - 1; ++i) {
509 ind -= axis_sizes[i];
511 ffi::Array<PrimExpr> idx;
512 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
513 idx.push_back(indices[i]);
516 for (
size_t i = axis + 1; i < indices.size(); ++i) {
517 idx.push_back(indices[i]);
537 inline Tensor stack(
const ffi::Array<Tensor>& inputs,
int axis = 0, std::string name =
"T_stack",
539 int ndim =
static_cast<int>(inputs[0]->shape.size());
540 ICHECK(-ndim - 1 <= axis && axis <= ndim)
541 <<
"stack only accepts `axis` in [-ndim, ndim)"
542 <<
", but got axis = " << axis <<
", and ndim = " << ndim;
546 ICHECK_LT(axis, inputs[0]->
shape.size() + 1) <<
"axis out of bounds";
548 const int stack_size =
static_cast<int>(inputs.size());
549 ffi::Array<PrimExpr> out_shape;
550 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) out_shape.push_back(inputs[0]->shape[i]);
551 out_shape.push_back(stack_size);
552 for (
size_t i =
static_cast<size_t>(axis); i < static_cast<size_t>(ndim); ++i)
553 out_shape.push_back(inputs[0]->shape[i]);
557 [&](
const ffi::Array<Var>& indices) {
558 ffi::Array<PrimExpr> idx;
559 for (
size_t i = 0; i < indices.size(); ++i)
560 if (i !=
static_cast<size_t>(axis)) idx.push_back(indices[i]);
561 auto ind = indices[axis];
562 auto ret = inputs[0](idx);
563 for (
int i = 0; i < static_cast<int>(inputs.size() - 1); ++i) {
584 int axis, std::string name =
"T_split",
587 axis +=
static_cast<int>(x->shape.size());
589 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
591 auto src_axis_size = x->shape[axis];
592 std::vector<PrimExpr> begin_ids;
593 begin_ids.push_back(0);
595 for (
auto idx : split_indices) {
597 auto back_node = begin_ids.back().as<
IntImmNode>();
598 if (idx_node && back_node) {
599 ICHECK_GT(idx_node->value, back_node->
value) <<
"split_indices must be sorted";
601 begin_ids.push_back(idx);
604 ffi::Array<ffi::Array<PrimExpr>> out_shapes;
605 for (
size_t i = 0; i < begin_ids.size(); ++i) {
607 if (i == begin_ids.size() - 1) {
608 out_axis_size = src_axis_size - begin_ids[i];
610 out_axis_size = begin_ids[i + 1] - begin_ids[i];
613 ffi::Array<PrimExpr>
shape;
614 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
615 shape.push_back(x->shape[i]);
617 shape.push_back(out_axis_size);
618 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
619 shape.push_back(x->shape[i]);
622 out_shapes.push_back(
shape);
625 ffi::Array<Tensor> result;
626 for (
size_t i = 0; i < begin_ids.size(); ++i) {
629 [&](
const ffi::Array<Var>& indices) {
630 auto begin = begin_ids[i];
631 ffi::Array<PrimExpr> real_indices;
632 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
633 real_indices.push_back(indices[j]);
635 real_indices.push_back(indices[axis] + begin);
636 for (
size_t j = axis + 1; j < indices.size(); ++j) {
637 real_indices.push_back(indices[j]);
640 return x(real_indices);
659 if (!(index->IsInstance<
tvm::IntImmNode>() && GetConstInt(index) >= 0)) {
667 int64_t begin_range = stride < 0 ? -1 : 0;
668 int64_t end_range = stride < 0 ? extent - 1 : extent;
686 bool assume_inbound =
true) {
687 if (assume_inbound) {
688 return ceildiv(end - begin, stride);
713 const te::Tensor& x,
const ffi::Array<PrimExpr>& begin,
const ffi::Array<PrimExpr>& end,
714 const ffi::Array<PrimExpr>& strides,
const ffi::Array<Integer>& axes,
715 bool assume_inbound =
true, std::string name =
"T_dynamic_strided_slice_with_axes",
717 const size_t src_tensor_dim = x->shape.size();
718 ICHECK_EQ(begin.size(), end.size());
719 ICHECK_EQ(begin.size(), strides.size());
720 ICHECK_EQ(begin.size(), axes.size());
721 ICHECK_LE(begin.size(), src_tensor_dim);
723 for (
const auto& axis_imm : axes) {
724 int axis = axis_imm->value;
725 ICHECK_LT(axis, src_tensor_dim);
730 ffi::Array<PrimExpr> out_shape = x->shape;
731 for (
size_t i = 0; i < begin.size(); i++) {
732 int axis = axes[i]->value;
734 analyzer.
Simplify(
GetLength(begin[i], end[i], strides[i], out_shape[axis], assume_inbound));
735 out_shape.Set(axis, new_shape);
740 [&](
const ffi::Array<tvm::tir::Var>& indices) {
741 ffi::Array<PrimExpr> real_indices =
744 for (
size_t i = 0; i < begin.size(); i++) {
745 int axis = axes[i]->value;
746 PrimExpr new_index = indices[axis] * strides[i] + begin[i];
747 real_indices.Set(axis, new_index);
750 return x(real_indices);
770 const ffi::Array<PrimExpr>& end,
771 const ffi::Array<PrimExpr>& strides,
bool assume_inbound =
true,
772 std::string name =
"T_dynamic_strided_slice",
774 const size_t src_tensor_dim = x->shape.size();
775 ICHECK_LE(begin.size(), src_tensor_dim);
776 ICHECK_LE(end.size(), src_tensor_dim);
777 ICHECK_LE(strides.size(), src_tensor_dim);
778 ICHECK_EQ(begin.size(), end.size());
779 ICHECK_EQ(begin.size(), strides.size());
781 const size_t num_slice_axes = begin.size();
782 ffi::Array<PrimExpr> out_shape;
785 for (
size_t i = 0; i < num_slice_axes; ++i) {
787 if (!begin[i]->IsInstance<ProducerLoadNode>() && !end[i]->IsInstance<ProducerLoadNode>() &&
788 !strides[i]->IsInstance<ProducerLoadNode>()) {
790 analyzer.
Simplify(
GetLength(begin[i], end[i], strides[i], x->shape[i], assume_inbound)));
796 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
797 out_shape.push_back(x->shape[i]);
802 [&](
const ffi::Array<tvm::tir::Var>& indices) {
803 ffi::Array<PrimExpr> real_indices;
804 for (
size_t i = 0; i < num_slice_axes; ++i) {
805 real_indices.push_back(indices[i] * strides[i] +
tvm::min(begin[i], x->shape[i] - 1));
808 for (
size_t i = num_slice_axes; i < src_tensor_dim; ++i) {
809 real_indices.push_back(indices[i]);
811 return x(real_indices);
832 bool assume_inbound =
true,
833 std::string name =
"T_strided_slice_dynamic",
835 DataType index_dtype = begin->shape[0]->dtype;
836 const int64_t num_dynamic_axes = begin->shape[0].as<
IntImmNode>()->value;
838 ICHECK_EQ(strides->shape[0].as<
IntImmNode>()->
value, num_dynamic_axes);
840 ffi::Array<PrimExpr> begin_expr, end_expr, strides_expr;
841 for (int64_t i = 0; i < num_dynamic_axes; ++i) {
843 begin_expr.push_back(begin(ind));
844 end_expr.push_back(end(ind));
845 strides_expr.push_back(strides(ind));
865 const ffi::Array<Integer>& begin,
866 const ffi::Array<Integer>& end,
867 const ffi::Array<Integer>& strides,
868 const ffi::Array<Integer>& axes,
869 const std::string& slice_mode) {
870 ICHECK(axes.size() == begin.size() && axes.size() == end.size() && axes.size() == strides.size());
871 std::vector<int64_t> begin_vec, end_vec, strides_vec;
872 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
873 auto begin_canonicalized = StridedSliceCanonicalizeBegin(ishape, begin_vec, strides_vec, axes,
874 begin[0]->dtype, slice_mode);
876 begin_canonicalized,
true);
896 const ffi::Array<Integer>& end,
897 const ffi::Array<Integer>& strides,
898 const ffi::Array<Integer>& axes,
899 std::string slice_mode =
"end",
900 std::string name =
"T_strided_slice_with_axes",
902 const size_t src_tensor_dim = x->shape.size();
903 ICHECK(axes.size() <= src_tensor_dim);
904 ICHECK(axes.size() == begin.size() && axes.size() == end.size() && axes.size() == strides.size());
906 std::vector<int64_t> begin_vec, end_vec, strides_vec;
907 std::tie(begin_vec, end_vec, strides_vec) = ConvertToVec(begin, end, strides, slice_mode);
909 auto begin_expr = StridedSliceCanonicalizeBegin(x->shape, begin_vec, strides_vec, axes,
910 begin[0]->dtype, slice_mode);
912 slice_mode, begin_expr);
916 [&](
const ffi::Array<tir::Var>& indices) {
917 ffi::Array<PrimExpr> real_indices;
918 for (
size_t i = 0; i < out_shape.size(); ++i) real_indices.push_back(indices[i]);
919 for (
size_t i = 0; i < axes.size(); ++i) {
920 auto stride =
make_const(strides[i].dtype(), strides_vec[i]);
921 PrimExpr ind = indices[axes[i].IntValue()] * stride + begin_expr[i];
922 real_indices.Set(axes[i].IntValue(), ind);
924 return x(real_indices);
944 const ffi::Array<Integer>& end,
const ffi::Array<Integer>& strides,
945 std::string slice_mode =
"end", std::string name =
"T_strided_slice",
947 size_t src_tensor_dim =
static_cast<size_t>(x->shape.size());
948 ffi::Array<Integer> axes;
949 for (
size_t i = 0; i < src_tensor_dim; ++i) axes.push_back(i);
950 ffi::Array<Integer> begin_full(begin);
951 ffi::Array<Integer> end_full(end);
952 ffi::Array<Integer> strides_full(strides);
959 for (
size_t i = strides.size(); i < src_tensor_dim; ++i) {
960 strides_full.push_back(one);
962 for (
size_t i = begin.size(); i < src_tensor_dim; ++i) {
963 begin_full.push_back(GetConstInt(strides_full[i]) > 0 ? zero : max_range);
965 for (
size_t i = end.size(); i < src_tensor_dim; ++i) {
966 end_full.push_back(GetConstInt(strides_full[i]) < 0 ? zero : max_range);
986 std::string name =
"T_split_sections",
989 axis +=
static_cast<int>(x->shape.size());
991 ICHECK_LT(axis, x->shape.size()) <<
"axis out of bounds";
993 auto src_axis_size = x->shape[axis];
995 ICHECK_GT(num_sections, 0) <<
"Slice count must be > 0";
997 ffi::Array<PrimExpr> split_indices;
998 auto seg_size =
indexdiv(src_axis_size + num_sections - 1, num_sections);
999 for (
int i = 0; i < num_sections; ++i) {
1002 split_indices.push_back(seg_size * i);
1022 std::string mode =
"fast", std::string name =
"T_take",
1024 ffi::Array<PrimExpr> a_shape = a->shape;
1025 ffi::Array<PrimExpr> out_shape = indices->shape;
1027 for (
size_t i = 0; i < a_shape.size(); ++i) {
1028 a_size = a_size * a_shape[i];
1031 if (mode ==
"clip") {
1034 [&](
const ffi::Array<Var>& out_index) {
1036 return a(UnravelIndex(idx, a_shape));
1039 }
else if (mode ==
"fast") {
1040 LOG(WARNING) <<
"Fast mode segfaults when there are out-of-bounds indices. "
1041 "Make sure input indices are in bound";
1044 [&](
const ffi::Array<Var>& out_index) {
1045 return a(UnravelIndex(indices(out_index), a_shape));
1048 }
else if (mode ==
"nan") {
1051 [&](
const ffi::Array<Var>& out_index) {
1053 indices(out_index) < 0 || indices(out_index) >= a_size,
1054 tvm::FloatImm(a->dtype, std::numeric_limits<float>::quiet_NaN()), indices(out_index));
1055 return a(UnravelIndex(idx, a_shape));
1061 [&](
const ffi::Array<Var>& out_index) {
1062 auto idx =
truncmod(
truncmod(indices(out_index), a_size) + a_size, a_size);
1063 return a(UnravelIndex(idx, a_shape));
1082 int axis, std::string name =
"T_sequence_mask",
1084 ICHECK(axis == 0 || axis == 1) <<
"axis must be either 0 or 1";
1085 ICHECK_EQ(valid_length->shape.size(), 1) <<
"valid_length must have ndim=1, i.e., (batch_size,).";
1086 auto length_dim = data->shape[axis];
1087 auto batch_dim = data->shape[1 - axis];
1088 ffi::Array<PrimExpr> out_shape = data->shape;
1091 [&](
const ffi::Array<Var>& out_index) {
1092 ffi::Array<PrimExpr> len_index;
1093 auto tid = out_index[axis];
1094 auto bid = out_index[1 - axis];
1095 len_index.push_back(bid);
1120 int axis, std::string mode =
"fast", std::string name =
"T_take",
1123 axis +=
static_cast<int>(a->shape.size());
1125 ICHECK_GE(axis, 0) <<
"axis out of bounds";
1126 ICHECK_LT(axis, a->shape.size()) <<
"axis out of bounds";
1127 auto axis_dim = a->shape[axis];
1128 auto indices_shape = [&]() -> ffi::Array<PrimExpr> {
1129 if (
auto tensor = indices.as<
TensorNode>()) {
1130 return tensor->shape;
1136 int indices_len =
static_cast<int>(indices_shape.size());
1138 int batch_dims_ = batch_dims;
1139 if (batch_dims_ != 0) {
1140 ICHECK_GE(batch_dims_, -indices_len) <<
"batch_dims out of bounds";
1141 ICHECK_LE(batch_dims_, indices_len) <<
"batch_dims out of bounds";
1143 if (batch_dims_ < 0) {
1144 batch_dims_ = indices_len + batch_dims_;
1147 ICHECK_LT(batch_dims_, a->shape.size()) <<
"batch_dims out of bounds";
1148 ICHECK_LE(batch_dims_, axis) <<
"batch_dims must be less than or equal to axis";
1149 for (
int i = 0; i < batch_dims_; ++i) {
1150 auto addr1 = a->shape[i];
1151 auto addr2 = indices_shape[i];
1152 auto v1 =
static_cast<IntImm*
>(&addr1)->get()->value;
1153 auto v2 =
static_cast<IntImm*
>(&addr2)->get()->value;
1154 ICHECK_EQ(v1, v2) <<
"a.shape[" << i <<
"] should be equal to indices.shape[" << i <<
"]";
1161 ffi::Array<PrimExpr> out_shape;
1162 for (
int i = 0; i < batch_dims_; ++i) {
1163 out_shape.push_back(a->shape[i]);
1165 for (
int i = batch_dims_; i < axis; ++i) {
1166 out_shape.push_back(a->shape[i]);
1168 for (
int i = batch_dims_; i < indices_len; ++i) {
1169 out_shape.push_back(indices_shape[i]);
1171 for (
size_t i = axis + 1; i < a->shape.size(); ++i) {
1172 out_shape.push_back(a->shape[i]);
1175 auto get_index = [&](
const ffi::Array<PrimExpr>& indices_position) ->
PrimExpr {
1176 if (
auto tensor = indices.as<
Tensor>()) {
1177 return tensor.value()(indices_position);
1178 }
else if (
auto prim = indices.as<
PrimExpr>()) {
1179 ICHECK_EQ(indices_position.size(), 0);
1180 return prim.value();
1182 LOG(FATAL) <<
"Variant did not contain either allowed type";
1186 if (mode ==
"clip") {
1187 if (batch_dims_ == 0) {
1190 [&](
const ffi::Array<Var>& out_index) {
1191 ffi::Array<PrimExpr> indices_position;
1192 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1193 indices_position.push_back(out_index[j]);
1195 ffi::Array<PrimExpr> real_indices;
1196 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1197 real_indices.push_back(out_index[j]);
1199 auto idx =
tvm::min(
tvm::max(0, get_index(indices_position)), axis_dim - 1);
1200 real_indices.push_back(idx);
1201 for (
size_t j = axis + indices_len; j < out_index.size(); ++j) {
1202 real_indices.push_back(out_index[j]);
1204 return a(real_indices);
1210 [&](
const ffi::Array<Var>& out_index) {
1211 ffi::Array<PrimExpr> indices_position;
1212 for (
size_t j = 0; j < static_cast<size_t>(batch_dims_); ++j) {
1213 indices_position.push_back(out_index[j]);
1215 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len - batch_dims_); ++j) {
1216 indices_position.push_back(out_index[j]);
1218 ffi::Array<PrimExpr> real_indices;
1219 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1220 real_indices.push_back(out_index[j]);
1222 auto idx =
tvm::min(
tvm::max(0, get_index(indices_position)), axis_dim - 1);
1223 real_indices.push_back(idx);
1224 for (
size_t j = axis + indices_len - batch_dims_; j < out_index.size(); ++j) {
1225 real_indices.push_back(out_index[j]);
1227 return a(real_indices);
1231 }
else if (mode ==
"fast") {
1232 LOG(WARNING) <<
"Fast mode segfaults when there are out-of-bounds indices. "
1233 "Make sure input indices are in bound";
1236 [&](
const ffi::Array<Var>& out_index) {
1237 ffi::Array<PrimExpr> indices_position;
1238 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1239 indices_position.push_back(out_index[j]);
1241 ffi::Array<PrimExpr> real_indices;
1242 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1243 real_indices.push_back(out_index[j]);
1245 real_indices.push_back(get_index(indices_position));
1246 for (
size_t j = axis + indices_len; j < out_index.size(); ++j) {
1247 real_indices.push_back(out_index[j]);
1249 return a(real_indices);
1252 }
else if (mode ==
"nan") {
1255 [&](
const ffi::Array<Var>& out_index) {
1256 ffi::Array<PrimExpr> indices_position;
1257 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1258 indices_position.push_back(out_index[j]);
1260 ffi::Array<PrimExpr> real_indices;
1261 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1262 real_indices.push_back(out_index[j]);
1264 PrimExpr idx = get_index(indices_position);
1265 real_indices.push_back(idx);
1266 for (
size_t j = axis + indices_len; j < out_index.size(); ++j) {
1267 real_indices.push_back(out_index[j]);
1269 PrimExpr in_bounds = idx >= 0 && idx < axis_dim;
1271 in_bounds, a(real_indices),
1278 [&](
const ffi::Array<Var>& out_index) {
1279 ffi::Array<PrimExpr> indices_position;
1280 for (
size_t j = axis; j < static_cast<size_t>(axis + indices_len); ++j) {
1281 indices_position.push_back(out_index[j]);
1283 ffi::Array<PrimExpr> real_indices;
1284 for (
size_t j = 0; j < static_cast<size_t>(axis); ++j) {
1285 real_indices.push_back(out_index[j]);
1287 auto idx =
truncmod(
truncmod(get_index(indices_position), axis_dim) + axis_dim, axis_dim);
1288 real_indices.push_back(idx);
1289 for (
size_t j = axis + indices_len; j < out_index.size(); ++j) {
1290 real_indices.push_back(out_index[j]);
1292 return a(real_indices);
1310 std::string name =
"T_where", std::string tag =
kBroadcast) {
1311 ICHECK_EQ(x->dtype, y->dtype) <<
"x and y must have the same dtype: " << x->dtype <<
" vs "
1313 auto get_out_shape = [&]() {
1314 auto bh1 = detail::BroadcastShape(x->shape, y->shape);
1315 ffi::Array<PrimExpr> common_shape1(bh1.common_shape.begin(), bh1.common_shape.end());
1316 auto bh2 = detail::BroadcastShape(condition->shape, common_shape1);
1317 ffi::Array<PrimExpr> common_shape2(bh2.common_shape.begin(), bh2.common_shape.end());
1318 return common_shape2;
1321 auto oshape = get_out_shape();
1323 auto c_bh = detail::BroadcastShape(condition->shape, oshape);
1324 auto x_bh = detail::BroadcastShape(x->shape, oshape);
1325 auto y_bh = detail::BroadcastShape(y->shape, oshape);
1327 auto select = [&](tvm::ffi::Array<tvm::tir::Var> ovars) {
1328 auto c = condition(InputIndexFromBroadcast(ovars, condition, c_bh.vars1, c_bh.all_vars));
1329 auto true_val = x(InputIndexFromBroadcast(ovars, x, x_bh.vars1, x_bh.all_vars));
1330 auto false_val = y(InputIndexFromBroadcast(ovars, y, y_bh.vars1, y_bh.all_vars));
1334 return compute(oshape, select, name, tag);
1351 int ndim =
static_cast<int>(x->shape.size());
1352 ICHECK(-ndim - 1 <= axis && axis <= ndim)
1353 <<
"repeat only accepts `axis` in [-data.ndim - 1, data.ndim]"
1354 <<
", but got axis = " << axis <<
", and data.ndim = " << ndim;
1355 ICHECK(repeats >= 1) <<
"repeat only accepts `repeats >= 1`"
1356 <<
", but got repeats = " << repeats;
1361 ffi::Array<PrimExpr> new_shape;
1362 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1363 new_shape.push_back(x->shape[i]);
1365 new_shape.push_back(repeats * x->shape[axis]);
1366 for (
size_t i = axis + 1; i < x->shape.size(); ++i) {
1367 new_shape.push_back(x->shape[i]);
1372 [&](
const ffi::Array<Var>& indices) {
1373 ffi::Array<PrimExpr> idx;
1374 for (
size_t i = 0; i < static_cast<size_t>(axis); ++i) {
1375 idx.push_back(indices[i]);
1377 idx.push_back(
indexdiv(indices[axis], repeats));
1378 for (
size_t i = axis + 1; i < indices.size(); ++i) {
1379 idx.push_back(indices[i]);
1398 size_t ndim = x->shape.size();
1399 size_t rdim = reps.size();
1400 size_t tdim = (ndim > rdim) ? ndim : rdim;
1401 ffi::Array<PrimExpr> data_shape;
1402 ffi::Array<PrimExpr> reps_shape;
1403 ffi::Array<PrimExpr> new_shape;
1405 for (
size_t i = 0; i < ndim; ++i) {
1406 data_shape.push_back(x->shape[i]);
1407 reps_shape.push_back(reps[i]);
1409 }
else if (ndim > rdim) {
1410 for (
size_t i = 0; i < ndim; ++i) data_shape.push_back(x->shape[i]);
1411 for (
size_t i = 0; i < (ndim - rdim); ++i) reps_shape.push_back(1);
1412 for (
size_t i = 0; i < rdim; ++i) reps_shape.push_back(reps[i]);
1414 for (
size_t i = 0; i < (rdim - ndim); ++i) data_shape.push_back(1);
1415 for (
size_t i = 0; i < ndim; ++i) data_shape.push_back(x->shape[i]);
1416 for (
size_t i = 0; i < rdim; ++i) reps_shape.push_back(reps[i]);
1418 for (
size_t i = 0; i < tdim; ++i) new_shape.push_back(data_shape[i] * reps_shape[i]);
1420 if (is_empty_shape(new_shape)) {
1422 new_shape, [&](
const ffi::Array<Var>& indices) {
return tvm::cast(x->dtype, 0); }, name,
1427 [&](
const ffi::Array<Var>& indices) {
1428 ffi::Array<PrimExpr> idx;
1430 for (
size_t i = 0; i < ndim; ++i) idx.push_back(
indexmod(indices[i], x->shape[i]));
1432 for (
size_t i = 0; i < ndim; ++i)
1433 idx.push_back(
indexmod(indices[rdim - ndim + i], x->shape[i]));
1453 std::string name =
"T_tile", std::string tag =
kBroadcast) {
1454 size_t ndim = x->shape.size();
1455 if (is_empty_shape(new_shape)) {
1457 new_shape, [&](
const ffi::Array<Var>& indices) {
return tvm::cast(x->dtype, 0); }, name,
1462 [&](
const ffi::Array<Var>& indices) {
1463 ffi::Array<PrimExpr> idx;
1465 for (
size_t i = 0; i < ndim; ++i) {
1466 idx.push_back(
indexmod(indices[i], x->shape[i]));
1469 for (
size_t i = 0; i < ndim; ++i) {
1470 idx.push_back(
indexmod(indices[rdim - ndim + i], x->shape[i]));
1491 std::string name =
"T_gather", std::string tag =
kInjective) {
1492 size_t ndim_d = data->shape.size();
1493 size_t ndim_i = indices->shape.size();
1494 ICHECK_GE(ndim_d, 1) <<
"Cannot gather from a scalar.";
1495 ICHECK_EQ(ndim_d, ndim_i);
1500 ICHECK_LT(axis, ndim_d);
1502 size_t indices_dim_i =
static_cast<size_t>(GetConstInt(indices->shape[axis]));
1503 ICHECK_GE(indices_dim_i, 1);
1505 ICHECK(indices->dtype.is_int() || indices->dtype.is_uint());
1507 ffi::Array<PrimExpr> out_shape;
1508 for (
size_t i = 0; i < ndim_i; ++i) {
1509 out_shape.push_back(indices->shape[i]);
1514 [&](
const ffi::Array<Var>& out_index) {
1515 ffi::Array<PrimExpr> indices_position;
1516 for (
size_t i = 0; i < ndim_i; ++i) {
1517 indices_position.push_back(out_index[i]);
1519 ffi::Array<PrimExpr> real_indices;
1520 for (
size_t i = 0; i < ndim_i; ++i) {
1521 if (i ==
static_cast<size_t>(axis)) {
1522 real_indices.push_back(indices(indices_position));
1524 real_indices.push_back(indices_position[i]);
1527 return data(real_indices);
1544 std::string name =
"T_gather_nd", std::string tag =
kInjective) {
1545 size_t ndim_d = data->shape.size();
1546 size_t ndim_i = indices->shape.size();
1547 ICHECK_GE(ndim_i, 1) <<
"indices tensor must have at least 1 dimensions";
1548 size_t indices_dim0 =
static_cast<size_t>(GetConstInt(indices->shape[0]));
1549 ICHECK_LE(indices_dim0, ndim_d) <<
"dim 0 of indices tensor must be no more "
1550 <<
"than dimensions of data tensor";
1551 ffi::Array<PrimExpr> out_shape;
1552 for (
size_t i = 1; i < ndim_i; ++i) {
1553 out_shape.push_back(indices->shape[i]);
1555 for (
size_t i = indices_dim0 + batch_dims; i < ndim_d; ++i) {
1556 out_shape.push_back(data->shape[i]);
1560 [&](
const ffi::Array<Var>& out_index) {
1561 ffi::Array<PrimExpr> indices_position;
1562 indices_position.push_back(0);
1563 for (
size_t i = 0; i < ndim_i - 1; ++i) {
1564 indices_position.push_back(out_index[i]);
1566 ffi::Array<PrimExpr> real_indices;
1567 for (
size_t i = 0; i < static_cast<size_t>(batch_dims); ++i) {
1568 real_indices.push_back(out_index[i]);
1570 for (
size_t i = 0; i < indices_dim0; ++i) {
1572 if (indices->dtype.is_int() || indices->dtype.is_uint()) {
1573 real_indices.push_back(indices(indices_position));
1578 if (real_indices.size() == ndim_d) {
1579 return data(real_indices);
1581 for (
size_t i = ndim_i - 1; i < out_index.size(); ++i) {
1582 real_indices.push_back(out_index[i]);
1584 return data(real_indices);
1605 bool trans_a =
false,
bool trans_b =
false,
1606 std::string name =
"T_matmul", std::string tag =
kMatMul) {
1607 tvm::ffi::Array<tvm::PrimExpr> output_shape{A->shape[trans_a ? 1 : 0], B->shape[trans_b ? 0 : 1]};
1610 return tvm::sum((trans_a ? A[k][i] : A[i][k]) * (trans_b ? B[j][k] : B[k][j]), {k});
1627 std::string name =
"T_tensordot", std::string tag =
kMatMul) {
1628 ICHECK_GE(A->shape.size(), axes);
1629 ICHECK_GE(B->shape.size(), axes);
1631 ffi::Array<PrimExpr> output_shape(A->shape.begin(), A->shape.end() + (-axes));
1632 for (
auto it = B->shape.begin() + axes; it != B->shape.end(); ++it) output_shape.push_back(*it);
1634 ffi::Array<IterVar> iter_vars;
1635 for (
int i = 0; i < axes; ++i)
1636 iter_vars.push_back(
reduce_axis(
Range(0, B->shape[i]),
"k" + std::to_string(i)));
1638 auto func = [&A, &B, &iter_vars, axes](
const ffi::Array<Var>& input_indices) {
1639 ffi::Array<PrimExpr> A_indices(input_indices.begin(),
1640 input_indices.begin() + (A->shape.size() - axes));
1641 for (
auto& v : iter_vars) A_indices.push_back(v);
1643 ffi::Array<PrimExpr> B_indices;
1644 for (
auto& v : iter_vars) B_indices.push_back(v);
1646 auto it = input_indices.begin() + (A->shape.size() - axes);
1647 for (; it != input_indices.end(); ++it) B_indices.push_back(*it);
1650 if (iter_vars.empty()) {
1651 return A(A_indices) * B(B_indices);
1653 return sum(A(A_indices) * B(B_indices), iter_vars);
1657 return compute(output_shape, func, name, tag);
1673 ffi::Array<PrimExpr> B_axes, std::string name =
"T_tensordot",
1675 ICHECK_EQ(A_axes.size(), B_axes.size());
1677 auto A_axes_val = GetConstIntValues(A_axes,
"A_axes");
1678 auto B_axes_val = GetConstIntValues(B_axes,
"B_axes");
1680 ffi::Array<PrimExpr> output_shape;
1681 for (
unsigned i = 0; i < A->shape.size(); ++i)
1682 if (std::find(A_axes_val.begin(), A_axes_val.end(), i) == A_axes_val.end())
1683 output_shape.push_back(A->shape[i]);
1684 for (
unsigned i = 0; i < B->shape.size(); ++i)
1685 if (std::find(B_axes_val.begin(), B_axes_val.end(), i) == B_axes_val.end())
1686 output_shape.push_back(B->shape[i]);
1688 ffi::Array<IterVar> iter_vars;
1689 for (
unsigned i = 0; i < B_axes_val.size(); ++i)
1690 iter_vars.push_back(
reduce_axis(
Range(0, B->shape[B_axes_val[i]]),
"k" + std::to_string(i)));
1692 auto func = [&A, &B, &iter_vars, A_axes_val, B_axes_val](
const ffi::Array<Var>& input_indices) {
1694 ffi::Array<PrimExpr> A_indices;
1695 for (
unsigned i = 0; i < A->shape.size(); ++i) {
1696 auto axes_pos = std::find(A_axes_val.begin(), A_axes_val.end(), i);
1697 if (axes_pos == A_axes_val.end()) {
1698 A_indices.push_back(input_indices[idx_input++]);
1700 A_indices.push_back(iter_vars[axes_pos - A_axes_val.begin()]);
1704 ffi::Array<PrimExpr> B_indices;
1705 for (
unsigned i = 0; i < B->shape.size(); ++i) {
1706 auto axes_pos = std::find(B_axes_val.begin(), B_axes_val.end(), i);
1707 if (axes_pos == B_axes_val.end()) {
1708 B_indices.push_back(input_indices[idx_input++]);
1710 B_indices.push_back(iter_vars[axes_pos - B_axes_val.begin()]);
1713 return sum(A(A_indices) * B(B_indices), iter_vars);
1715 return compute(output_shape, func, name, tag);
1726 }
else if (is_all_int && analyzer.
CanProveLess(step, 0)) {
1734 num_elem = analyzer.
Simplify(num_elem);
1738 [&](
const ffi::Array<Var>& indices) {
return tvm::cast(dtype, start + step * indices[0]); },
1752 inline ffi::Array<Tensor>
meshgrid(
const ffi::Array<Tensor>& inputs,
const std::string& indexing,
1753 std::string name =
"T_meshgrid", std::string tag =
kInjective) {
1754 const bool cartesian_indexing = indexing ==
"xy" && inputs.size() >= 2;
1755 ffi::Array<PrimExpr> out_shape;
1756 for (
size_t i = 0; i < inputs.size(); ++i) {
1757 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1758 out_shape.push_back(inputs[src_index]->
shape.size() == 0 ? 1 : inputs[src_index]->shape[0]);
1760 ffi::Array<Tensor> result;
1761 for (
size_t i = 0; i < inputs.size(); ++i) {
1764 [&](
const ffi::Array<Var>& indices) {
1765 const int src_index = (cartesian_indexing && i < 2) ? 1 - i : i;
1766 auto ndim = inputs[i]->GetShape().size();
1767 ffi::Array<PrimExpr> real_indices = {};
1769 real_indices = {indices[src_index]};
1771 return inputs[i](real_indices);
1789 const std::string& dst_layout,
1790 const std::string schedule_rule =
"None",
1791 const std::string name =
"T_layout_trans",
1793 Layout src_layout_struct(src_layout);
1794 Layout dst_layout_struct(dst_layout);
1796 if (src_layout_struct.
Equals(dst_layout_struct)) {
1800 ICHECK(src_layout_struct.defined() && dst_layout_struct.defined())
1801 <<
"cannot convert from/to undefined layout";
1804 ICHECK(layout_converter.defined())
1805 <<
"cannot convert from " << src_layout <<
" to " << dst_layout;
1807 ffi::Array<PrimExpr> dst_shape = layout_converter.ForwardShape(src->shape);
1809 ffi::Map<ffi::String, ffi::Any> attrs = {{
"schedule_rule", ffi::String(schedule_rule)},
1811 {
"src_layout", ffi::String(src_layout)},
1812 {
"dst_layout", ffi::String(dst_layout)},
1813 {
"input_shape", src->shape}};
1817 [&](
const ffi::Array<Var>& dst_indices) {
1818 ffi::Array<PrimExpr> dst_indices_expr(dst_indices.begin(), dst_indices.end());
1819 ffi::Array<PrimExpr> src_indices = layout_converter.BackwardIndex(dst_indices_expr);
1821 for (
size_t i = 0; i < src.ndim(); ++i) {
1822 in_range = in_range && (src_indices[i] < src->shape[i]);
1831 std::vector<std::string>* axes) {
1833 std::string axis =
"";
1834 for (
char c : std::string(layout)) {
1835 if (c >=
'A' && c <=
'z') {
1838 shape->push_back(factor);
1841 }
else if (c >=
'0' && c <=
'9') {
1842 factor = factor * 10 + c -
'0';
1843 if (!axis.empty()) {
1844 axes->push_back(axis);
1848 LOG(FATAL) <<
"Invalid layout " << layout;
1851 if (!axis.empty()) {
1852 axes->push_back(axis);
1867 const Tensor& src,
const ffi::String& src_layout,
const ffi::String& dst_layout,
1868 const ffi::String name =
"T_auto_scheduler_layout_trans",
const ffi::String tag =
kInjective) {
1869 ffi::Array<PrimExpr> src_shape;
1870 std::vector<std::string> src_axes;
1871 ffi::Array<PrimExpr> dst_shape;
1872 std::vector<std::string> dst_axes;
1878 [&](
const ffi::Array<Var>& dst_indices) {
1879 ffi::Array<PrimExpr> dst_indices_expr(dst_indices.begin(), dst_indices.end());
1880 ffi::Array<PrimExpr> src_indices;
1881 for (
const std::string& src_axis : src_axes) {
1883 CHECK_EQ(dst_indices_expr.size(), dst_axes.size());
1884 for (
size_t i = 0; i < dst_axes.size(); ++i) {
1885 if (dst_axes[i] == src_axis) {
1886 src_index = src_index * dst_shape[i] + dst_indices_expr[i];
1889 src_indices.push_back(src_index);
1891 return src(src_indices);
1934 const ffi::String name =
"T_meta_schedule_layout_trans",
const ffi::String tag =
kInjective) {
1936 ffi::Array<Range> iter_domain;
1937 iter_domain.reserve(src->shape.size());
1938 for (
const PrimExpr& e : src->shape) {
1941 ffi::Array<PrimExpr> post_transform_shape = index_map->MapShape(src->shape, &analyzer);
1943 post_transform_shape,
1944 [src, inv = index_map.
Inverse(iter_domain, &analyzer),
1945 &analyzer](
const ffi::Array<Var>& indices) ->
PrimExpr {
1947 inv->MapIndices(ffi::Array<PrimExpr>{indices.begin(), indices.end()}, &analyzer));
1962 int ndim =
static_cast<int>(src->shape.size());
1963 ffi::Array<PrimExpr> out_shape{ndim};
1966 [&](
const ffi::Array<Var>& indices) {
1967 auto idx = indices[0];
1969 for (
int i = 0; i < ndim; ++i) {
1986 const std::string& name =
"tensor_size",
1988 int ndim =
static_cast<int>(src->shape.size());
1989 ffi::Array<PrimExpr> out_tensor_size = {};
1992 [&](
const ffi::Array<Var>& indices) {
1994 for (
int i = 0; i < ndim; ++i) {
1995 ret *= src->shape[i];
2017 int depth,
int axis,
const DataType& dtype,
2018 ffi::Array<PrimExpr> oshape = ffi::Array<PrimExpr>(),
2019 const std::string name =
"T_one_hot",
const std::string tag =
kInjective) {
2020 int true_axis = (axis == -1) ? indices->shape.size() : axis;
2021 if (oshape.size() == 0) {
2022 int ndim = indices->shape.size() + 1;
2023 int indices_index = 0;
2024 for (
int i = 0; i < ndim; i++) {
2025 if (i == true_axis) {
2026 oshape.push_back(
Integer(depth));
2028 oshape.push_back(indices->shape[indices_index++]);
2037 [&](
const ffi::Array<Var>& iter_vars) {
2038 ffi::Array<Var> indices_indices;
2039 for (
size_t i = 0; i < iter_vars.size(); i++) {
2040 if (
static_cast<int>(i) == true_axis) {
2044 indices_indices.push_back(iter_vars[i]);
2047 auto idx = iter_vars[true_axis];
2048 return tir::Select(indices(indices_indices) == idx, on_value_cast, off_value_cast);
2064 const ffi::Array<PrimExpr>& output_shape,
const Tensor& sparse_values,
2066 const std::string name =
"T_sparse_to_dense",
2068 ICHECK(sparse_indices->dtype.is_int()) <<
"sparse_indices only accepts integer values";
2069 ICHECK_LE(sparse_indices->shape.size(), 3)
2070 <<
"sparse_indices tensor should be 0D, 1D, or 2D only";
2071 ICHECK_LE(sparse_values->shape.size(), 2) <<
"sparse_values tensor should be 0D or 1D only";
2073 const auto rank_sparse_indices =
static_cast<int>(sparse_indices->shape.size());
2074 ffi::Array<PrimExpr> oshape;
2075 for (
auto l : output_shape) {
2076 oshape.push_back(l);
2080 [&](
const ffi::Array<Var>& indices) {
2082 if (0 == rank_sparse_indices) {
2084 }
else if (1 == rank_sparse_indices) {
2085 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
2089 for (
int j = 0; j < GetConstInt(sparse_indices->shape[0]); j++) {
2091 for (
int k = 0; k < GetConstInt(sparse_indices->shape[1]); k++) {
2092 PrimExpr comparision = indices[k] == sparse_indices[j][k];
2093 aggregate_condition = 0 == k ? comparision : aggregate_condition && comparision;
2116 bool super_diag_right_align,
bool sub_diag_right_align,
2117 const std::string name =
"T_matrix_set_diag",
2119 size_t ndim = input->shape.size() - 1;
2121 bool only_one_diagonal = k1 == k2;
2125 [&](
const ffi::Array<Var>& iter_vars) {
2126 auto get_diag = [&]() {
2127 ffi::Array<PrimExpr> diagonal_indices;
2128 PrimExpr k, offset = 0;
2129 for (size_t i = 0; i < ndim - 1; i++) {
2130 diagonal_indices.push_back(iter_vars[i]);
2132 if (only_one_diagonal) {
2136 k = iter_vars[ndim] - iter_vars[ndim - 1];
2137 diagonal_indices.push_back(k2 - k);
2140 auto get_offset = [&](PrimExpr M, PrimExpr N) {
2142 return diagonal->shape[diagonal->shape.size() - 1] - if_then_else(M < N, M, N);
2144 offset = if_then_else(
2146 super_diag_right_align ? get_offset(input->shape[ndim] - k, input->shape[ndim - 1])
2148 sub_diag_right_align ? get_offset(input->shape[ndim], input->shape[ndim - 1] + k)
2151 diagonal_indices.push_back(if_then_else(k >= 0, iter_vars[ndim - 1], iter_vars[ndim]) +
2153 return diagonal(diagonal_indices);
2157 get_diag(), input(iter_vars)),
2172 const std::string name =
"advanced_index",
2174 ICHECK_LE(indices.size(), data->shape.size()) <<
"too many indices for data!";
2175 ffi::Array<PrimExpr> oshape;
2176 ffi::Array<PrimExpr> broadcast_shape;
2177 ffi::Array<Tensor> bindices;
2179 broadcast_shape = indices[0]->shape;
2180 for (
size_t i = 1; i < indices.size(); ++i) {
2181 auto bh = detail::BroadcastShape(broadcast_shape, indices[i]->
shape);
2182 broadcast_shape = ffi::Array<PrimExpr>(bh.common_shape.begin(), bh.common_shape.end());
2184 if (indices.size() == 1) {
2189 for (
size_t i = 0; i < indices.size(); ++i) {
2190 bindices.push_back(
broadcast_to(indices[i], broadcast_shape));
2194 for (
const auto& dim : broadcast_shape) {
2195 oshape.push_back(dim);
2197 for (
size_t i = indices.size(); i < data->
shape.size(); ++i) {
2198 oshape.push_back(data->shape[i]);
2203 [&](
const ffi::Array<Var>& iter_var) {
2204 ffi::Array<PrimExpr> tensor_indices;
2205 for (
size_t i = 0; i < broadcast_shape.size(); ++i) {
2206 tensor_indices.push_back(iter_var[i]);
2208 ffi::Array<PrimExpr> real_indices;
2209 for (
size_t i = 0; i < bindices.size(); ++i) {
2210 real_indices.push_back(bindices[i](tensor_indices));
2212 for (
size_t i = broadcast_shape.size(); i < iter_var.size(); ++i) {
2213 real_indices.push_back(iter_var[i]);
2216 return data(real_indices);
2225 ffi::Array<PrimExpr> output_shape,
2226 std::string name =
"T_strided_slice_dynamic",
2228 const size_t num_dynamic_axes = x.
ndim();
2229 ICHECK_EQ(begin.
ndim(), 1);
2230 ICHECK_EQ(end.
ndim(), 1);
2231 ICHECK_EQ(strides.
ndim(), 1);
2232 const auto* len_begin = begin->shape[0].as<
IntImmNode>();
2233 const auto* len_end = end->shape[0].as<
IntImmNode>();
2234 const auto* len_strides = strides->shape[0].as<
IntImmNode>();
2237 ICHECK(len_strides);
2238 ICHECK_EQ(len_begin->value, num_dynamic_axes);
2239 ICHECK_EQ(len_end->
value, num_dynamic_axes);
2240 ICHECK_EQ(len_strides->
value, num_dynamic_axes);
2244 [&](
const ffi::Array<tvm::tir::Var>& indices) {
2245 ffi::Array<PrimExpr> real_indices;
2246 for (
size_t i = 0; i < num_dynamic_axes; ++i) {
2248 real_indices.push_back(indices[i] * strides(ind) +
tvm::min(begin(ind), x->shape[i] - 1));
2250 return x(real_indices);
Algebra expression simplifications.
Broadcast op constructions.
Managed reference class to FloatImmNode.
Definition: expr.h:545
Constant integer literals in the program.
Definition: expr.h:493
int64_t value
the Internal value.
Definition: expr.h:496
Managed reference class to IntImmNode.
Definition: expr.h:510
Container of constant int that adds more constructors.
Definition: expr.h:600
Reference to PrimExprNode.
Definition: expr.h:124
DataType dtype() const
Definition: expr.h:138
Range container
Definition: expr.h:689
static Range FromMinExtent(PrimExpr min, PrimExpr extent, Span span=Span())
construct a new range with min and extent The corresponding constructor is removed,...
Analyzer that contains bunch of sub-analyzers.
Definition: analyzer.h:634
bool CanProveGreaterEqual(const PrimExpr &expr, int64_t lower_bound)
Whether can we prove expr >= val.
PrimExpr Simplify(const PrimExpr &expr, int steps=2)
Simplify expr.
bool CanProveLess(const PrimExpr &expr, int64_t upper_bound)
Whether can we prove expr < val.
Runtime primitive data type.
Definition: data_type.h:47
static DataType Float(int bits, int lanes=1)
Construct an float type.
Definition: data_type.h:291
bool is_int() const
Definition: data_type.h:190
static DataType Int(int bits, int lanes=1)
Construct an int type.
Definition: data_type.h:274
Managed Tensor. The array is backed by reference counted blocks.
Definition: tensor.h:53
Node to represent a tensor.
Definition: tensor.h:70
Tensor structure representing a possible input, or intermediate computation result.
Definition: tensor.h:100
size_t ndim() const
Definition: tensor.h:212
Bijective function mapping for data layout transformation. Given two Layout, BijectiveLayout build an...
Definition: data_layout.h:333
Definition: index_map.h:169
IndexMap Inverse(ffi::Array< Range > initial_ranges, arith::Analyzer *analyzer) const
Generate the inverse mapping.
Managed reference to LayoutNode.
Definition: data_layout.h:124
bool Equals(const Layout &rhs) const
Whether the two layouts are equal.
Definition: data_layout.h:279
Managed reference to SelectNode.
Definition: expr.h:515
A variable node in the IR.
Definition: var.h:48
ffi::String name_hint
The hint to the variable name.
Definition: var.h:54
a named variable in TIR
Definition: var.h:77
Utility functions for handling constants in TVM expressions.
Layout expression to describe the data organization of a tensor. And BijectiveLayout to mapping two d...
Defines a remapping of buffer indices.
Tensor expression language DSL.
Definition: extracted_task.h:33
IterVar reduce_axis(Range dom, std::string name="rv")
Create a new IterVar for reduction operations.
Tensor compute(ffi::Array< PrimExpr > shape, FCompute fcompute, std::string name="tensor", std::string tag="", ffi::Map< ffi::String, ffi::Any > attrs={})
Construct a new tensor by computing over shape, using the computation rule: result_tensor[axis] = fco...
Var var(std::string name_hint, DataType t=DataType::Int(32))
Construct a new Var expression.
PrimExpr make_const(DataType t, ValueType value, Span span=Span())
Make a const value with certain data type.
Definition: op.h:994
DataType DefaultIndexType()
if TVM_INDEX_DEFAULT_I64 is set, return int64, otherwise return int32
Definition: buffer.h:43
PrimExpr make_zero(DataType t, Span span=Span())
Make a const zero expr.
Definition: op.h:1008
te::Tensor dynamic_strided_slice(const te::Tensor &x, const te::Tensor &begin, const te::Tensor &end, const te::Tensor &strides, ffi::Array< PrimExpr > output_shape, std::string name="T_strided_slice_dynamic", std::string tag=kInjective)
Definition: transform.h:2223
PrimExpr GetLength(PrimExpr begin, PrimExpr end, PrimExpr stride, PrimExpr extent, bool assume_inbound=true)
Definition: transform.h:685
Tensor sequence_mask(const Tensor &data, const Tensor &valid_length, double mask_value, int axis, std::string name="T_sequence_mask", std::string tag=kInjective)
Mask the out-of-boundary elements of each sequence.
Definition: transform.h:1081
Tensor gather_nd(const Tensor &data, const Tensor &indices, int batch_dims=0, std::string name="T_gather_nd", std::string tag=kInjective)
Gather elements from a n-dimension array.
Definition: transform.h:1543
int64_t StaticCanonicalizeIndex(int64_t index, int64_t extent, int64_t stride)
Definition: transform.h:666
Tensor reshape(const Tensor &x, ffi::Array< PrimExpr > newshape, std::string name="T_reshape", std::string tag=kInjective)
Reshape a tensor.
Definition: transform.h:328
Tensor one_hot(const Tensor &indices, const PrimExpr on_value, const PrimExpr off_value, int depth, int axis, const DataType &dtype, ffi::Array< PrimExpr > oshape=ffi::Array< PrimExpr >(), const std::string name="T_one_hot", const std::string tag=kInjective)
Returns a one-hot tensor where the locations repsented by indices take value on_value,...
Definition: transform.h:2016
tvm::te::Tensor broadcast_to(const tvm::te::Tensor &t, const tvm::ffi::Array< tvm::PrimExpr > &output_shape, std::string name="T_broadcast_to", std::string tag=kBroadcast)
Creates an operation that broadcasts a tensor into a compatible shape according to numpy's rules.
Definition: broadcast.h:48
constexpr auto kBroadcast
Definition: tags.h:36
Tensor arange(const PrimExpr &start, const PrimExpr &stop, const PrimExpr &step, DataType dtype, std::string name="T_arange", std::string tag=kInjective)
Definition: transform.h:1718
constexpr auto kInjective
Definition: tags.h:33
Tensor stack(const ffi::Array< Tensor > &inputs, int axis=0, std::string name="T_stack", std::string tag=kInjective)
Join a sequence of tensors along a new axis.
Definition: transform.h:537
Tensor auto_scheduler_layout_transform(const Tensor &src, const ffi::String &src_layout, const ffi::String &dst_layout, const ffi::String name="T_auto_scheduler_layout_trans", const ffi::String tag=kInjective)
Transform the auto-scheduler generated layout according to src_layout and dst_layout.
Definition: transform.h:1866
ffi::Array< PrimExpr > StridedSliceOutputShape(const ffi::Array< PrimExpr > &ishape, const ffi::Array< Integer > &begin, const ffi::Array< Integer > &end, const ffi::Array< Integer > &strides, const ffi::Array< Integer > &axes, const std::string &slice_mode)
Calculate the output shape of strided_slice, the entry point for Relax type relation.
Definition: transform.h:864
PrimExpr CanonicalizeIndex(PrimExpr index, PrimExpr extent, PrimExpr stride)
Definition: transform.h:675
te::Tensor dynamic_strided_slice_with_axes(const te::Tensor &x, const ffi::Array< PrimExpr > &begin, const ffi::Array< PrimExpr > &end, const ffi::Array< PrimExpr > &strides, const ffi::Array< Integer > &axes, bool assume_inbound=true, std::string name="T_dynamic_strided_slice_with_axes", std::string tag=kInjective)
strided_slice of a tensor where begin/end/stride can be mixed static and dynamic
Definition: transform.h:712
Tensor transpose(const Tensor &x, ffi::Optional< ffi::Array< Integer >> opt_axes, std::string name="T_transpose", std::string tag=kInjective)
Permute the dimensions of an array.
Definition: transform.h:204
void parse_auto_scheduler_layout(const ffi::String &layout, ffi::Array< PrimExpr > *shape, std::vector< std::string > *axes)
Utility function for auto_scheduler_layout_transform.
Definition: transform.h:1830
Tensor squeeze(const Tensor &x, ffi::Optional< ffi::Array< Integer >> opt_axes, bool atleast1d=false, std::string name="T_squeeze", std::string tag=kInjective)
Remove size 1 dimensions from the shape of a tensor. The removed dimensions must have a constant size...
Definition: transform.h:413
ffi::Array< Tensor > split_n_sections(const Tensor &x, int num_sections, int axis, std::string name="T_split_sections", std::string tag=kInjective)
Split a tensor into a number of sub-tensors.
Definition: transform.h:985
Tensor cast(const Tensor &x, DataType type, std::string name="T_cast", std::string tag=kElementWise)
Cast each element of x to the given type. If expr is scalar and type is a corresponding vector type,...
Definition: elemwise.h:281
Tensor expand_dims(const Tensor &x, int axis, int num_newaxis=1, std::string name="T_expand_dims", std::string tag=kBroadcast)
Creates an operation to insert new dimensions of length 1.
Definition: transform.h:155
Tensor sparse_to_dense(const Tensor &sparse_indices, const ffi::Array< PrimExpr > &output_shape, const Tensor &sparse_values, const PrimExpr &default_value, const std::string name="T_sparse_to_dense", const std::string tag=kInjective)
Get a dense tensor.
Definition: transform.h:2063
Tensor unravel_index(const Tensor &x, const Tensor &shape, std::string name="T_unravel", std::string tag=kInjective)
Converts a flat index or array of flat indices into a tuple of coordinate arrays.
Definition: transform.h:365
Tensor layout_transform(const Tensor &src, const std::string &src_layout, const std::string &dst_layout, const std::string schedule_rule="None", const std::string name="T_layout_trans", const std::string tag=kInjective)
Transform the layout according to src_layout and dst_layout.
Definition: transform.h:1788
Tensor adv_index(const Tensor &data, const ffi::Array< Tensor > &indices, const std::string name="advanced_index", const std::string tag=kInjective)
Numpy style advanced indexing with tensor.
Definition: transform.h:2171
Tensor strided_slice(const Tensor &x, const ffi::Array< Integer > &begin, const ffi::Array< Integer > &end, const ffi::Array< Integer > &strides, std::string slice_mode="end", std::string name="T_strided_slice", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:943
Tensor concatenate(const ffi::Array< Tensor > &inputs, int axis=0, std::string name="T_concat", std::string tag=kInjective)
Join a sequence of tensors along an existing axis.
Definition: transform.h:478
ffi::Array< Tensor > meshgrid(const ffi::Array< Tensor > &inputs, const std::string &indexing, std::string name="T_meshgrid", std::string tag=kInjective)
Produce grids by expanding input over dimensions defined by other inputs.
Definition: transform.h:1752
constexpr auto kMatMul
Definition: tags.h:37
Tensor strided_slice_with_axes(const Tensor &x, const ffi::Array< Integer > &begin, const ffi::Array< Integer > &end, const ffi::Array< Integer > &strides, const ffi::Array< Integer > &axes, std::string slice_mode="end", std::string name="T_strided_slice_with_axes", std::string tag=kInjective)
strided_slice of a tensor
Definition: transform.h:895
Tensor dyn_tile(const Tensor &x, ffi::Array< PrimExpr > new_shape, size_t rdim, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1452
Tensor reverse_sequence(const Tensor &x, const Tensor &seq_lengths, int seq_axis=1, int batch_axis=0, std::string name="T_reverse_sequence", std::string tag=kInjective)
Reverse the tensor for variable length slices. Input is first sliced along batch axis and then elemen...
Definition: transform.h:263
ffi::Array< Tensor > split_indices_array(const Tensor &x, ffi::Array< PrimExpr > split_indices, int axis, std::string name="T_split", std::string tag=kInjective)
Split a tensor into multiple sub-tensors.
Definition: transform.h:583
Tensor tensordot(const Tensor &A, const tvm::te::Tensor &B, int axes=2, std::string name="T_tensordot", std::string tag=kMatMul)
A generalization of matrix multiplication to tensors.
Definition: transform.h:1626
Tensor sum(const Tensor &data, const ffi::Optional< ffi::Array< Integer >> &axis, bool keepdims=false, bool atleast1d=false)
Creates an operation that sums array elements over a given axis.
Definition: reduction.h:328
Tensor meta_schedule_layout_transform(const Tensor &src, const tir::IndexMap &index_map, const ffi::String name="T_meta_schedule_layout_trans", const ffi::String tag=kInjective)
Transform the meta-schedule generated layout according to TIR's IndexMap.
Definition: transform.h:1932
Tensor tile(const Tensor &x, ffi::Array< Integer > reps, std::string name="T_tile", std::string tag=kBroadcast)
Creates an operation to tile elements of an array.
Definition: transform.h:1396
Tensor take(const Tensor &a, const Tensor &indices, int batch_dims, std::string mode="fast", std::string name="T_take", std::string tag=kInjective)
Take elements from an flattened input array when axis is None.
Definition: transform.h:1021
PrimExpr DynamicCanonicalizeIndex(PrimExpr index, PrimExpr extent, PrimExpr stride)
Definition: transform.h:648
tvm::te::Tensor matmul(const tvm::te::Tensor &A, const tvm::te::Tensor &B, bool trans_a=false, bool trans_b=false, std::string name="T_matmul", std::string tag=kMatMul)
Creates an operation that calculates a matrix multiplication (row-major notation): A(i,...
Definition: transform.h:1604
Tensor dynamic_strided_slice(const Tensor &x, const ffi::Array< PrimExpr > &begin, const ffi::Array< PrimExpr > &end, const ffi::Array< PrimExpr > &strides, bool assume_inbound=true, std::string name="T_dynamic_strided_slice", std::string tag=kInjective)
strided_slice of a tensor where begin/end/stride can be mixed static and dynamic
Definition: transform.h:769
Tensor matrix_set_diag(const Tensor &input, const Tensor &diagonal, int k1, int k2, bool super_diag_right_align, bool sub_diag_right_align, const std::string name="T_matrix_set_diag", const std::string tag=kInjective)
Returns a tensor with the diagonal of input tensor replaced with the provided diagonals.
Definition: transform.h:2115
Tensor where(const Tensor &condition, const Tensor &x, const Tensor &y, std::string name="T_where", std::string tag=kBroadcast)
Return the elements, either from x or y, depending on the condition.
Definition: transform.h:1309
Tensor shape(const Tensor &src, DataType dtype, const std::string name="T_shape", const std::string tag=kInjective)
Get the shape of input tensor.
Definition: transform.h:1960
Tensor gather(const Tensor &data, int axis, const Tensor &indices, std::string name="T_gather", std::string tag=kInjective)
Gather values along given axis from given indices.
Definition: transform.h:1490
Tensor sliding_window(const Tensor &x, int axis, ffi::Array< Integer > window_shape, ffi::Array< Integer > strides, std::string name="T_sliding_window", std::string tag="")
Creates an operation to slide a window over the input x.
Definition: transform.h:76
te::Tensor tensor_size(const te::Tensor &src, const DataType &dtype, const std::string &name="tensor_size", const std::string &tag=kInjective)
Get the size of input tensor.
Definition: transform.h:1985
Tensor repeat(const Tensor &x, int repeats, int axis, std::string name="T_repeat", std::string tag=kBroadcast)
Creates an operation to repeat elements of an array.
Definition: transform.h:1349
Performance counters for profiling via the PAPI library.
Definition: analyzer.h:37
PrimExpr ceildiv(PrimExpr a, PrimExpr b, Span span=Span())
compute ceil(a / b)
PrimExpr ret(PrimExpr value, Span span=Span())
Return the value.
PrimExpr max(PrimExpr a, PrimExpr b, Span span=Span())
take maximum of two values
PrimExpr truncmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder of truncdiv
PrimExpr if_then_else(PrimExpr cond, PrimExpr true_value, PrimExpr false_value, Span span=Span())
Conditional expression.
PrimExpr cast(const DataType &t, PrimExpr value, Span span=Span())
cast value to type.
PrimExpr max_value(const DataType &dtype, Span span=Span())
PrimExpr ceil(PrimExpr x, Span span=Span())
Calculate ceil(x)
PrimExpr sum(PrimExpr source, ffi::Array< tir::IterVar > axis, ffi::Array< PrimExpr > init={}, Span span=Span())
sum of source expression over axis
PrimExpr indexdiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b) where a and b are non-negative.
PrimExpr min(PrimExpr a, PrimExpr b, Span span=Span())
take minimum of two values
PrimExpr indexmod(PrimExpr a, PrimExpr b, Span span=Span())
compute the remainder floor(a / b) where a and b are non-negative.
PrimExpr floordiv(PrimExpr a, PrimExpr b, Span span=Span())
compute floor(a / b)
Operation node can generate one or multiple Tensors.
Index ravel and unraval operations.
Utility functions for strided_slice op.
Utility functions for handling tensor.
Common operators defined for Expr.