Compile PaddlePaddle Models

Author: Ziyuan Ma

This article is an introductory tutorial to deploy PaddlePaddle models with Relay. For us to begin with, PaddlePaddle>=2.1.3 is required to be installed. A quick solution is

pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

or please refer to official site. https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html

import tarfile
import paddle
import numpy as np
import tvm
from tvm import relay
from tvm.contrib.download import download_testdata
/usr/local/lib/python3.7/dist-packages/paddle/vision/transforms/functional_pil.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
  'nearest': Image.NEAREST,
/usr/local/lib/python3.7/dist-packages/paddle/vision/transforms/functional_pil.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
  'bilinear': Image.BILINEAR,
/usr/local/lib/python3.7/dist-packages/paddle/vision/transforms/functional_pil.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
  'bicubic': Image.BICUBIC,
/usr/local/lib/python3.7/dist-packages/paddle/vision/transforms/functional_pil.py:39: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
  'box': Image.BOX,
/usr/local/lib/python3.7/dist-packages/paddle/vision/transforms/functional_pil.py:40: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
  'lanczos': Image.LANCZOS,
/usr/local/lib/python3.7/dist-packages/paddle/vision/transforms/functional_pil.py:41: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
  'hamming': Image.HAMMING

Load pretrained ResNet50 model

We load a pretrained ResNet50 provided by PaddlePaddle.

url = "https://bj.bcebos.com/x2paddle/models/paddle_resnet50.tar"
model_path = download_testdata(url, "paddle_resnet50.tar", module="model")

with tarfile.open(model_path) as tar:
    names = tar.getnames()
    for name in names:
        tar.extract(name, "./")

model = paddle.jit.load("./paddle_resnet50/model")
/usr/local/lib/python3.7/dist-packages/paddle/fluid/backward.py:1666: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3,and in 3.9 it will stop working
  return list(x) if isinstance(x, collections.Sequence) else [x]

Load a test image

A single cat dominates the examples!

from PIL import Image
import paddle.vision.transforms as T


transforms = T.Compose(
    [
        T.Resize((256, 256)),
        T.CenterCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
)

img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true"
img_path = download_testdata(img_url, "cat.png", module="data")
img = Image.open(img_path).resize((224, 224))

img = transforms(img)
img = np.expand_dims(img, axis=0)
/usr/local/lib/python3.7/dist-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  if data.dtype == np.object:

Compile the model with relay

target = "llvm"
shape_dict = {"inputs": img.shape}
mod, params = relay.frontend.from_paddle(model, shape_dict)

with tvm.transform.PassContext(opt_level=3):
    executor = relay.build_module.create_executor(
        "graph", mod, tvm.cpu(0), target, params
    ).evaluate()

Execute on TVM

dtype = "float32"
tvm_output = executor(tvm.nd.array(img.astype(dtype))).numpy()

Look up synset name

Look up prediction top 1 index in 1000 class synset.

synset_url = "".join(
    [
        "https://gist.githubusercontent.com/zhreshold/",
        "4d0b62f3d01426887599d4f7ede23ee5/raw/",
        "596b27d23537e5a1b5751d2b0481ef172f58b539/",
        "imagenet1000_clsid_to_human.txt",
    ]
)
synset_name = "imagenet1000_clsid_to_human.txt"
synset_path = download_testdata(synset_url, synset_name, module="data")
with open(synset_path) as f:
    synset = f.readlines()

top1 = np.argmax(tvm_output[0])
print(f"TVM prediction top-1 id: {top1}, class name: {synset[top1]}")
TVM prediction top-1 id: 282, class name:  282: 'tiger cat',

Gallery generated by Sphinx-Gallery