tvm.relay.testing

Utilities for testing and benchmarks

Classes:

Prelude([mod])

Contains standard definitions.

Functions:

enabled_targets()

Get all enabled targets with associated devices.

create_workload(net[, initializer, seed])

Helper function to create benchmark image classification workload.

count(prelude, n)

Takes a ConstructorValue corresponding to a nat ADT and converts it into a Python integer.

make_nat_value(prelude, n)

The inverse of count(): Given a non-negative Python integer, constructs a ConstructorValue representing that value as a nat.

make_nat_expr(prelude, n)

Given a non-negative Python integer, constructs a Python expression representing that integer's value as a nat.

to_python(expr[, mod, target])

Converts the given Relay expression into a Python script (as a Python AST object).

run_as_python(expr[, mod, target])

Converts the given Relay expression into a Python script and executes it.

gradient(expr[, mod, mode])

Transform the input function, returning a function that calculate the original result, paired with gradient of the input.

check_grad(func[, inputs, test_inputs, eps, ...])

Perform numerical gradient checking given a relay function.

count_ops(expr)

count number of times a given op is called in the graph

class tvm.relay.testing.Prelude(mod=None)

Contains standard definitions.

Methods:

get_name(canonical, dtype)

Get name corresponding to the canonical name

get_global_var(canonical, dtype)

Get global var corresponding to the canonical name

get_type(canonical, dtype)

Get type corresponding to the canonical name

get_ctor(ty_name, canonical, dtype)

Get constructor corresponding to the canonical name

get_name_static(canonical, dtype, shape[, ...])

Get name corresponding to the canonical name

get_global_var_static(canonical, dtype, shape)

Get var corresponding to the canonical name

get_type_static(canonical, dtype, shape)

Get type corresponding to the canonical name

get_ctor_static(ty_name, name, dtype, shape)

Get constructor corresponding to the canonical name

get_tensor_ctor_static(name, dtype, shape)

Get constructor corresponding to the canonical name

load_prelude()

Parses the Prelude from Relay's text format into a module.

get_name(canonical, dtype)

Get name corresponding to the canonical name

get_global_var(canonical, dtype)

Get global var corresponding to the canonical name

get_type(canonical, dtype)

Get type corresponding to the canonical name

get_ctor(ty_name, canonical, dtype)

Get constructor corresponding to the canonical name

get_name_static(canonical, dtype, shape, batch_dim=None)

Get name corresponding to the canonical name

get_global_var_static(canonical, dtype, shape, batch_dim=None)

Get var corresponding to the canonical name

get_type_static(canonical, dtype, shape)

Get type corresponding to the canonical name

get_ctor_static(ty_name, name, dtype, shape)

Get constructor corresponding to the canonical name

get_tensor_ctor_static(name, dtype, shape)

Get constructor corresponding to the canonical name

load_prelude()

Parses the Prelude from Relay’s text format into a module.

tvm.relay.testing.enabled_targets()

Get all enabled targets with associated devices.

In most cases, you should use tvm.testing.parametrize_targets() instead of this function.

In this context, enabled means that TVM was built with support for this target, the target name appears in the TVM_TEST_TARGETS environment variable, and a suitable device for running this target exists. If TVM_TEST_TARGETS is not set, it defaults to variable DEFAULT_TEST_TARGETS in this module.

If you use this function in a test, you must decorate the test with tvm.testing.uses_gpu() (otherwise it will never be run on the gpu).

Returns

targets – A list of pairs of all enabled devices and the associated context

Return type

list

tvm.relay.testing.create_workload(net, initializer=None, seed=0)

Helper function to create benchmark image classification workload.

Parameters
  • net (tvm.relay.Function) – The selected function of the network.

  • initializer (Initializer) – The initializer used

  • seed (int) – The seed used in initialization.

Returns

  • mod (tvm.IRModule) – The created relay module.

  • params (dict of str to NDArray) – The parameters.

tvm.relay.testing.count(prelude, n)

Takes a ConstructorValue corresponding to a nat ADT and converts it into a Python integer. This is an example of using an ADT value in Python.

tvm.relay.testing.make_nat_value(prelude, n)

The inverse of count(): Given a non-negative Python integer, constructs a ConstructorValue representing that value as a nat.

tvm.relay.testing.make_nat_expr(prelude, n)

Given a non-negative Python integer, constructs a Python expression representing that integer’s value as a nat.

tvm.relay.testing.to_python(expr: tvm.ir.expr.RelayExpr, mod=None, target=llvm -keys=cpu)

Converts the given Relay expression into a Python script (as a Python AST object). For easiest debugging, import the astor package and use to_source().

tvm.relay.testing.run_as_python(expr: tvm.ir.expr.RelayExpr, mod=None, target=llvm -keys=cpu)

Converts the given Relay expression into a Python script and executes it.

Note that closures will be returned as PackedFuncs

tvm.relay.testing.gradient(expr, mod=None, mode='higher_order')

Transform the input function, returning a function that calculate the original result, paired with gradient of the input.

Parameters
  • expr (tvm.relay.Expr) – The input expression, which is a Function or a GlobalVar.

  • mod (Optional[tvm.IRModule]) –

  • mode (Optional[String]) – The mode of the automatic differentiation algorithm. ‘first_order’ only works on first order code, but will not produce reference nor closure. ‘higher_order’ works on all code using reference and closure.

Returns

expr – The transformed expression.

Return type

tvm.relay.Expr

tvm.relay.testing.check_grad(func, inputs=None, test_inputs=None, eps=1e-06, atol=1e-05, rtol=0.001, scale=None, mean=0, mode='higher_order', target_devices=None, executor_kind='debug')

Perform numerical gradient checking given a relay function.

Compare analytical gradients to numerical gradients derived from two-sided approximation. Note that this test may fail if your function input types are not of high enough precision.

Parameters
  • func (tvm.relay.Function) – The relay function to test.

  • inputs (List[np.array]) – Optional user-provided input parameters to use. If not given, will generate random normal inputs scaled to be close to the chosen epsilon value to avoid numerical precision loss.

  • test_inputs (List[np.array]) – The inputs to test for gradient matching. Useful in cases where some inputs are not differentiable, such as symbolic inputs to dynamic ops. If not given, all inputs are tested.

  • eps (float) – The epsilon value to use for computing numerical gradient approximation.

  • atol (float) – The absolute tolerance on difference between numerical and analytical gradients. Note that this needs to be scaled appropriately relative to the chosen eps and inputs.

  • rtol (float) – The relative tolerance on difference between numerical and analytical gradients. Note that this needs to be scaled appropriately relative to the chosen eps.

  • scale (float) – The standard deviation of the inputs.

  • mean (float) – The mean of the inputs.

  • target_devices (Optional[List[Tuple[tvm.target.Target, tvm.runtime.Device]]]) – A list of targets/devices on which the gradient should be tested. If not specified, will default to tvm.testing.enabled_targets().

tvm.relay.testing.count_ops(expr)

count number of times a given op is called in the graph

a simple multilayer perceptron

tvm.relay.testing.mlp.get_net(batch_size, num_classes=10, image_shape=(1, 28, 28), dtype='float32')

Get network a simple multilayer perceptron.

batch_sizeint

The batch size used in the model

num_classesint, optional

Number of claseses

image_shapetuple, optional

The input image shape

dtypestr, optional

The data type

Returns

net – The dataflow.

Return type

relay.Function

tvm.relay.testing.mlp.get_workload(batch_size, num_classes=10, image_shape=(1, 28, 28), dtype='float32')

Get benchmark workload for a simple multilayer perceptron.

Parameters
  • batch_size (int) – The batch size used in the model

  • num_classes (int, optional) – Number of claseses

  • image_shape (tuple, optional) – The input image shape

  • dtype (str, optional) – The data type

Returns

  • mod (tvm.IRModule) – The relay module that contains a mlp network.

  • params (dict of str to NDArray) – The parameters.

Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py Original author Wei Wu

Implemented the following paper:

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Identity Mappings in Deep Residual Networks”

tvm.relay.testing.resnet.residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, data_layout='NCHW', kernel_layout='IOHW')

Return ResNet Unit symbol for building ResNet

Parameters
  • data (str) – Input data

  • num_filter (int) – Number of output channels

  • bnf (int) – Bottle neck channels factor with regard to num_filter

  • stride (tuple) – Stride used in convolution

  • dim_match (bool) – True means channel number between input and output is the same, otherwise means differ

  • name (str) – Base name of the operators

tvm.relay.testing.resnet.resnet(units, num_stages, filter_list, num_classes, data_shape, bottle_neck=True, layout='NCHW', dtype='float32')

Return ResNet Program.

Parameters
  • units (list) – Number of units in each stage

  • num_stages (int) – Number of stages

  • filter_list (list) – Channel size of each stage

  • num_classes (int) – Output size of symbol

  • data_shape (tuple of int.) – The shape of input data.

  • bottle_neck (bool) – Whether apply bottleneck transformation.

  • layout (str) – The data layout for conv2d

  • dtype (str) – The global data type.

tvm.relay.testing.resnet.get_net(batch_size, num_classes, num_layers=50, image_shape=(3, 224, 224), layout='NCHW', dtype='float32', **kwargs)

Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py Original author Wei Wu

tvm.relay.testing.resnet.get_workload(batch_size=1, num_classes=1000, num_layers=18, image_shape=(3, 224, 224), layout='NCHW', dtype='float32', **kwargs)

Get benchmark workload for resnet

Parameters
  • batch_size (int) – The batch size used in the model

  • num_classes (int, optional) – Number of classes

  • num_layers (int, optional) – Number of layers

  • image_shape (tuple, optional) – The input image shape

  • layout (str) – The data layout for conv2d

  • dtype (str, optional) – The data type

  • kwargs (dict) – Extra arguments

Returns

  • mod (tvm.IRModule) – The relay module that contains a ResNet network.

  • params (dict of str to NDArray) – The parameters.

Net of the generator of DCGAN

Adopted from: https://github.com/tqchen/mxnet-gan/blob/main/mxgan/generator.py

Reference: Radford, Alec, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks.” arXiv preprint arXiv:1511.06434 (2015).

tvm.relay.testing.dcgan.deconv2d(data, ishape, oshape, kshape, layout, name, stride=(2, 2))

a deconv layer that enlarges the feature map

tvm.relay.testing.dcgan.deconv2d_bn_relu(data, prefix, **kwargs)

a block of deconv + batch norm + relu

tvm.relay.testing.dcgan.get_net(batch_size, random_len=100, oshape=(3, 64, 64), ngf=128, code=None, layout='NCHW', dtype='float32')

get net of dcgan generator

tvm.relay.testing.dcgan.get_workload(batch_size, oshape=(3, 64, 64), ngf=128, random_len=100, layout='NCHW', dtype='float32')

Get benchmark workload for a DCGAN generator

Parameters
  • batch_size (int) – The batch size used in the model

  • oshape (tuple, optional) – The shape of output image, layout=”CHW”

  • ngf (int, optional) – The number of final feature maps in the generator

  • random_len (int, optional) – The length of random input

  • layout (str, optional) – The layout of conv2d transpose

  • dtype (str, optional) – The data type

Returns

  • mod (tvm.IRModule) – The relay module that contains a DCGAN network.

  • params (dict of str to NDArray) – The parameters.

Port of NNVM version of MobileNet to Relay.

tvm.relay.testing.mobilenet.conv_block(data, name, channels, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), epsilon=1e-05, layout='NCHW')

Helper function to construct conv_bn-relu

tvm.relay.testing.mobilenet.separable_conv_block(data, name, depthwise_channels, pointwise_channels, kernel_size=(3, 3), downsample=False, padding=(1, 1), epsilon=1e-05, layout='NCHW', dtype='float32')

Helper function to get a separable conv block

tvm.relay.testing.mobilenet.mobile_net(num_classes=1000, data_shape=(1, 3, 224, 224), dtype='float32', alpha=1.0, is_shallow=False, layout='NCHW')

Function to construct a MobileNet

tvm.relay.testing.mobilenet.get_workload(batch_size=1, num_classes=1000, image_shape=(3, 224, 224), dtype='float32', layout='NCHW')

Get benchmark workload for mobilenet

Parameters
  • batch_size (int, optional) – The batch size used in the model

  • num_classes (int, optional) – Number of classes

  • image_shape (tuple, optional) – The input image shape, cooperate with layout

  • dtype (str, optional) – The data type

  • layout (str, optional) – The data layout of image_shape and the operators cooperate with image_shape

Returns

  • mod (tvm.IRModule) – The relay module that contains a MobileNet network.

  • params (dict of str to NDArray) – The parameters.

Implementation of a Long Short-Term Memory (LSTM) cell.

Adapted from: https://gist.github.com/merrymercy/5eb24e3b019f84200645bd001e9caae9

tvm.relay.testing.lstm.lstm_cell(num_hidden, batch_size=1, dtype='float32', name='')

Long-Short Term Memory (LSTM) network cell.

Parameters
  • num_hidden (int) – Number of units in output symbol.

  • batch_size (int) – Batch size (length of states).

Returns

result – A Relay function that evaluates an LSTM cell. The function takes in a tensor of input data, a tuple of two states, and weights and biases for dense operations on the inputs and on the state. It returns a tuple with two members, an output tensor and a tuple of two new states.

Return type

tvm.relay.Function

tvm.relay.testing.lstm.get_net(iterations, num_hidden, batch_size=1, dtype='float32')

Constructs an unrolled RNN with LSTM cells

tvm.relay.testing.lstm.get_workload(iterations, num_hidden, batch_size=1, dtype='float32')

Get benchmark workload for an LSTM RNN.

Parameters
  • iterations (int) – The number of iterations in the desired LSTM RNN.

  • num_hidden (int) – The size of the hiddxen state

  • batch_size (int, optional (default 1)) – The batch size used in the model

  • dtype (str, optional (default "float32")) – The data type

Returns

  • mod (tvm.IRModule) – The relay module that contains a LSTM network.

  • params (dict of str to NDArray) – The parameters.

Inception V3, suitable for images with around 299 x 299

Reference: Szegedy, Christian, et al. “Rethinking the Inception Architecture for Computer Vision.” arXiv preprint arXiv:1512.00567 (2015).

Adopted from https://github.com/apache/incubator-mxnet/blob/master/

example/image-classification/symbols/inception-v3.py

tvm.relay.testing.inception_v3.get_net(batch_size, num_classes, image_shape, dtype)

Get network a Inception v3 network.

batch_sizeint

The batch size used in the model

num_classesint, optional

Number of claseses

image_shapetuple, optional

The input image shape

dtypestr, optional

The data type

Returns

net – The dataflow.

Return type

relay.Function

tvm.relay.testing.inception_v3.get_workload(batch_size=1, num_classes=1000, image_shape=(3, 299, 299), dtype='float32')

Get benchmark workload for InceptionV3

Parameters
  • batch_size (int) – The batch size used in the model

  • num_classes (int, optional) – Number of classes

  • image_shape (tuple, optional) – The input image shape

  • dtype (str, optional) – The data type

Returns

  • mod (tvm.IRModule) – The relay module that contains an Inception V3 network.

  • params (dict of str to NDArray) – The parameters.

Symbol of SqueezeNet

Reference: Iandola, Forrest N., et al. “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.” (2016).

tvm.relay.testing.squeezenet.get_net(batch_size, image_shape, num_classes, version, dtype)

Get symbol of SqueezeNet

Parameters
  • batch_size (int) – The batch size used in the model

  • image_shape (tuple, optional) – The input image shape

  • num_classes (int) – The number of classification results

  • version (str, optional) – “1.0” or “1.1” of SqueezeNet

tvm.relay.testing.squeezenet.get_workload(batch_size=1, num_classes=1000, version='1.0', image_shape=(3, 224, 224), dtype='float32')

Get benchmark workload for SqueezeNet

Parameters
  • batch_size (int) – The batch size used in the model

  • num_classes (int, optional) – Number of classes

  • version (str, optional) – “1.0” or “1.1” of SqueezeNet

  • image_shape (tuple, optional) – The input image shape

  • dtype (str, optional) – The data type

Returns

  • mod (tvm.IRModule) – The relay module that contains a SqueezeNet network.

  • params (dict of str to NDArray) – The parameters.

References:

Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014).

tvm.relay.testing.vgg.get_feature(internal_layer, layers, filters, batch_norm=False)

Get VGG feature body as stacks of convolutions.

tvm.relay.testing.vgg.get_classifier(input_data, num_classes)

Get VGG classifier layers as fc layers.

tvm.relay.testing.vgg.get_net(batch_size, image_shape, num_classes, dtype, num_layers=11, batch_norm=False)
Parameters
  • batch_size (int) – The batch size used in the model

  • image_shape (tuple, optional) – The input image shape

  • num_classes (int, optional) – Number of claseses

  • dtype (str, optional) – The data type

  • num_layers (int) – Number of layers for the variant of vgg. Options are 11, 13, 16, 19.

  • batch_norm (bool, default False) – Use batch normalization.

tvm.relay.testing.vgg.get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224), dtype='float32', num_layers=11, batch_norm=False)

Get benchmark workload for VGG nets.

Parameters
  • batch_size (int) – The batch size used in the model

  • num_classes (int, optional) – Number of claseses

  • image_shape (tuple, optional) – The input image shape

  • dtype (str, optional) – The data type

  • num_layers (int) – Number of layers for the variant of vgg. Options are 11, 13, 16, 19.

  • batch_norm (bool) – Use batch normalization.

Returns

  • mod (tvm.IRModule) – The relay module that contains a VGG network.

  • params (dict of str to NDArray) – The parameters.

Port of MxNet version of Densenet to Relay. https://github.com/apache/incubator-mxnet/blob/master/python/mxnet/gluon/model_zoo/vision/densenet.py

tvm.relay.testing.densenet.get_workload(densenet_size=121, classes=1000, batch_size=4, image_shape=(3, 224, 224), dtype='float32')

Gets benchmark workload for densenet.

Parameters
  • densenet_size (int, optional (default 121)) – Parameter for the network size. The supported sizes are 121, 161, 169, and 201.

  • classes (int, optional (default 1000)) – The number of classes.

  • batch_size (int, optional (detault 4)) – The batch size for the network.

  • image_shape (shape, optional (default (3, 224, 224))) – The shape of the input data.

  • dtype (data type, optional (default 'float32')) – The data type of the input data.

Returns

  • mod (tvm.IRModule) – The relay module that contains a DenseNet network.

  • params (dict of str to NDArray) – The benchmark paraeters.