Managed reference to SearchStrategyNode.
More...
#include <search_strategy.h>
|
static SearchStrategy | PySearchStrategy (PySearchStrategyNode::FInitializeWithTuneContext f_initialize_with_tune_context, PySearchStrategyNode::FPreTuning f_pre_tuning, PySearchStrategyNode::FPostTuning f_post_tuning, PySearchStrategyNode::FGenerateMeasureCandidates f_generate_measure_candidates, PySearchStrategyNode::FNotifyRunnerResults f_notify_runner_results) |
| Create a search strategy with customized methods on the python-side. More...
|
|
static SearchStrategy | ReplayTrace (int num_trials_per_iter, int max_trials_per_task, int max_fail_count) |
| Constructor of replay trace search strategy. More...
|
|
static SearchStrategy | ReplayFunc (int num_trials_per_iter, int max_trials_per_task) |
| Constructor of replay func search strategy. More...
|
|
static SearchStrategy | EvolutionarySearch (int num_trials_per_iter, int max_trials_per_task, int population_size, double init_measured_ratio, int init_min_unmeasured, int genetic_num_iters, double genetic_mutate_prob, int genetic_max_fail_count, double eps_greedy) |
| Constructor of evolutionary search strategy. More...
|
|
◆ EvolutionarySearch()
static SearchStrategy tvm::meta_schedule::SearchStrategy::EvolutionarySearch |
( |
int |
num_trials_per_iter, |
|
|
int |
max_trials_per_task, |
|
|
int |
population_size, |
|
|
double |
init_measured_ratio, |
|
|
int |
init_min_unmeasured, |
|
|
int |
genetic_num_iters, |
|
|
double |
genetic_mutate_prob, |
|
|
int |
genetic_max_fail_count, |
|
|
double |
eps_greedy |
|
) |
| |
|
static |
Constructor of evolutionary search strategy.
- Parameters
-
num_trials_per_iter | The number of trials per iteration, i.e., the batch size. |
max_trials_per_task | The total number of trials for evolutionary search. |
population_size | The initial sample population. |
init_measured_ratio | The ratio of measures samples in initial population. |
init_min_unmeasured | The minimal size of unmeasured population in the initial sampling. |
genetic_num_iters | The iterations to run the genetic algorithm. |
genetic_mutate_prob | The probability of mutation. |
genetic_max_fail_count | The maximum number to try evolving the given trace. |
eps_greedy | The ratio to select samples in a greedy fashion via their predicted score. |
◆ PySearchStrategy()
Create a search strategy with customized methods on the python-side.
- Parameters
-
f_initialize_with_tune_context | The packed function of InitializeWithTuneContext . |
f_pre_tuning | The packed function of PreTuning . |
f_post_tuning | The packed function of PostTuning . |
f_generate_measure_candidates | The packed function of GenerateMeasureCandidates . |
f_notify_runner_results | The packed function of NotifyRunnerResults . |
- Returns
- The search strategy created.
◆ ReplayFunc()
static SearchStrategy tvm::meta_schedule::SearchStrategy::ReplayFunc |
( |
int |
num_trials_per_iter, |
|
|
int |
max_trials_per_task |
|
) |
| |
|
static |
Constructor of replay func search strategy.
- Parameters
-
num_trials_per_iter | The number of trials per iteration, i.e., the batch size. |
max_trials_per_task | The total number of trials for func replaying. |
◆ ReplayTrace()
static SearchStrategy tvm::meta_schedule::SearchStrategy::ReplayTrace |
( |
int |
num_trials_per_iter, |
|
|
int |
max_trials_per_task, |
|
|
int |
max_fail_count |
|
) |
| |
|
static |
Constructor of replay trace search strategy.
- Parameters
-
num_trials_per_iter | The number of trials per iteration, i.e., the batch size. |
max_trials_per_task | The total number of trials for trace replaying. |
max_fail_count | The max number of failures during trace replaying. |
◆ TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS()
The documentation for this class was generated from the following file: