Managed reference to SearchStrategyNode.
More...
#include <search_strategy.h>
|
| static SearchStrategy | PySearchStrategy (FInitializeWithTuneContext f_initialize_with_tune_context, FPreTuning f_pre_tuning, FPostTuning f_post_tuning, FGenerateMeasureCandidates f_generate_measure_candidates, FNotifyRunnerResults f_notify_runner_results, FClone f_clone) |
| | Create a search strategy with customized methods on the python-side. More...
|
| |
| static SearchStrategy | ReplayTrace (int max_fail_count) |
| | Constructor of replay trace search strategy. More...
|
| |
| static SearchStrategy | ReplayFunc () |
| | Constructor of replay func search strategy. More...
|
| |
| static SearchStrategy | EvolutionarySearch (int population_size, double init_measured_ratio, int init_min_unmeasured, int max_fail_count, int genetic_num_iters, double genetic_mutate_prob, int genetic_max_fail_count, double eps_greedy) |
| | Constructor of evolutionary search strategy. More...
|
| |
◆ FClone
The function type of Clone method.
- Returns
- The cloned search strategy.
◆ FGenerateMeasureCandidates
The function type of GenerateMeasureCandidates method.
- Returns
- The measure candidates generated, nullptr if finished.
◆ FInitializeWithTuneContext
The function type of InitializeWithTuneContext method.
- Parameters
-
| context | The tuning context for initialization. |
◆ FNotifyRunnerResults
The function type of NotifyRunnerResults method.
- Parameters
-
| results | The measurement results from the runner. |
◆ FPostTuning
The function type of PostTuning method.
◆ FPreTuning
The function type of PreTuning method.
◆ EvolutionarySearch()
| static SearchStrategy tvm::meta_schedule::SearchStrategy::EvolutionarySearch |
( |
int |
population_size, |
|
|
double |
init_measured_ratio, |
|
|
int |
init_min_unmeasured, |
|
|
int |
max_fail_count, |
|
|
int |
genetic_num_iters, |
|
|
double |
genetic_mutate_prob, |
|
|
int |
genetic_max_fail_count, |
|
|
double |
eps_greedy |
|
) |
| |
|
static |
Constructor of evolutionary search strategy.
- Parameters
-
| population_size | The initial sample population. |
| init_measured_ratio | The ratio of measures samples in initial population. |
| init_min_unmeasured | The minimal size of unmeasured population in the initial sampling. |
| max_fail_count | The max number of failure during initial sampling. |
| genetic_num_iters | The iterations to run the genetic algorithm. |
| genetic_mutate_prob | The probability of mutation. |
| genetic_max_fail_count | The maximum number to try evolving the given trace. |
| eps_greedy | The ratio to select samples in a greedy fashion via their predicted score. |
◆ PySearchStrategy()
Create a search strategy with customized methods on the python-side.
- Parameters
-
| f_initialize_with_tune_context | The packed function of InitializeWithTuneContext. |
| f_pre_tuning | The packed function of PreTuning. |
| f_post_tuning | The packed function of PostTuning. |
| f_generate_measure_candidates | The packed function of GenerateMeasureCandidates. |
| f_notify_runner_results | The packed function of NotifyRunnerResults. |
| f_clone | The packed function of Clone. |
- Returns
- The search strategy created.
◆ ReplayFunc()
| static SearchStrategy tvm::meta_schedule::SearchStrategy::ReplayFunc |
( |
| ) |
|
|
static |
Constructor of replay func search strategy.
◆ ReplayTrace()
| static SearchStrategy tvm::meta_schedule::SearchStrategy::ReplayTrace |
( |
int |
max_fail_count | ) |
|
|
static |
Constructor of replay trace search strategy.
- Parameters
-
| max_fail_count | The max number of failures during trace replaying. |
◆ TVM_FFI_DEFINE_OBJECT_REF_METHODS_NULLABLE()
The documentation for this class was generated from the following file: