tvm.tir.schedule¶
Namespace for the TensorIR schedule API.
- class tvm.tir.schedule.BlockScope¶
An object corresponds to each block sref in the sref tree, which tracks the producer-consumer dependency between blocks.
Glossary:
Block scope: A contiguous subtree of the sref tree, rooted at each block sref, whose components are:
scope root: a block sref
internal srefs: loop srefs
scope leaves: block srefs
Child block: The scope leaf blocks under the scope root or a specific internal sref
- get_deps_by_src(block: tvm.tir.block_scope.StmtSRef) List[tvm.tir.block_scope.Dependency] ¶
Get all dependencies whose src is the target`block`.
- Parameters
block (StmtSRef) – The queried block
- Returns
blocks – The dependencies
- Return type
List[Dependency]
- get_deps_by_dst(block: tvm.tir.block_scope.StmtSRef) List[tvm.tir.block_scope.Dependency] ¶
Get all dependencies whose dst is the target block.
- Parameters
block (StmtSRef) – The queried block
- Returns
blocks – The dependencies
- Return type
List[Dependency]
- class tvm.tir.schedule.Dependency¶
A tuple (src, dst, kind) representing certain types of dependency. For example, (A, B, kRAW) means block B depends on block A, and the dependency kind is read-after-write, which means block B reads the result written by block A.
- class tvm.tir.schedule.DepKind(value)¶
Type of dependency.
- RAW¶
Read-after-write dependency
- Type
int = 0
- WAW¶
Write-after-write dependency
- Type
int = 1
- WAR¶
Write-after-read dependency. Not supported in TensorIR for now.
- Type
int = 2
- OPAQUE¶
Opaque dependency
- Type
int = 3
- class tvm.tir.schedule.StmtSRef¶
An object that refers to schedulable elements in the TensorIR, aka “sref”.
Glossary - Block sref: An StmtSref that points to a TensorIR block. - Loop sref: An StmtSRef that points to a TensorIR for loop. - Parent sref: The parent sref of an sref is the block/loop sref that points to its closest schedulable statement of its ancestors on the TensorIR AST. - Root sref: Sref to the root block. Every sref has exactly one parent sref except for root sref. - Sref tree: The parent-children-relationship of srefs that forms a tree, uniquely determined by the TensorIR AST.
- property stmt: Optional[Union[tvm.tir.stmt.Block, tvm.tir.stmt.For]]¶
The block/for stmt the object refers to
- property parent: Optional[tvm.tir.block_scope.StmtSRef]¶
The parent sref
- static inline_mark() tvm.tir.block_scope.StmtSRef ¶
A special StmtSRef, which doesn’t point to any stmt in the AST, only serving as a “mark” to hint compute-at to do the work of compute-inline
- static root_mark() tvm.tir.block_scope.StmtSRef ¶
A special StmtSRef, which doesn’t point to any stmt in the AST, only serving as a “mark” to hint compute-at to do nothing
- class tvm.tir.schedule.Instruction(kind: tvm.tir.schedule.instruction.InstructionKind, inputs: List[Any], attrs: List[Any], outputs: List[Any])¶
Schedule instructions each corresponds to a schedule primitive
- kind¶
The kind of the instruction
- Type
- inputs¶
The input random variables of the instruction, and the type of each element can be one of the following: - BlockRV - LoopRV - ExprRV - float - int - str - None
- Type
List[INPUT_RV_TYPE]
- attrs¶
The attributes of the instruction. Similar to attributes of an operator, attributes of an instruction are arbitrary constant metadata required by the instructions. For example, the name of the block to be retrieved in GetBlock.
- Type
List[ATTR_TYPE]
- outputs¶
The output random variables of the instruction, and the type of each element can be one of the following: - BlockRV - LoopRV - ExprRV, atomic variables only, won’t be constants or composite PrimExpr
- Type
List[OUTPUT_RV_TYPE]
- class tvm.tir.schedule.InstructionKind¶
Kind of an instruction, e.g. Split, Reorder, etc. Besides the name, every kind of instruction has its own properties, including: 1) A boolean indicating if the instruction is pure, i.e. change nothing in the schedule state 2) A functor that applies the instruction to a TensorIR schedule 3) A functor that converts the instruction to a statement in python syntax 4) A functor that serialize its attributes to JSON 5) A functor that deserialize its attributes from JSON
Unlike tvm.ir.op, InstructionKind doesn’t support unstructured properties, mainly because there is no such usecase yet to add any other property.
Note
The functor properties are not exposed on python side at the moment
- property is_pure: bool¶
Indicates if the instruction is pure, i.e. removing it alone doesn’t mutate the schedule state. For example, the instruction GetBlock is pure because it changes nothing, while ComputeInline is not because removing it leads to a different resulting schedule.
- Returns
pure – The boolean flag indicating if the instruction is pure
- Return type
- static get(name: str) tvm.tir.schedule.instruction.InstructionKind ¶
Retrieve an InstructionKind using its name
- Parameters
name (str) – The registered name of the InstructionKind
- Returns
kind – The InstructionKind retrieved
- Return type
- class tvm.tir.schedule.BlockRV¶
A random variable that refers to a block
- tvm.tir.schedule.ExprRV¶
alias of
tvm.ir.expr.PrimExpr
- class tvm.tir.schedule.LoopRV¶
A random variable that refers to a loop
- class tvm.tir.schedule.Schedule(mod: Union[tvm.tir.function.PrimFunc, tvm.ir.module.IRModule], *, seed: Optional[int] = None, debug_mask: Union[str, int] = 'none', error_render_level: str = 'detail', enable_check: bool = True)¶
The user-facing schedule class
A schedule is a set of transformations that change the order of computation but preserve the semantics of computation. Some example of schedules: 1) Split a loop into two; 2) Reorder two loops; 3) Inline the computation of a specific buffer into its consumer
The schedule class stores auxiliary information to schedule correctly and efficiently.
Link to tutorial: https://tvm.apache.org/docs/tutorials/language/schedule_primitives.html
- property mod: tvm.ir.module.IRModule¶
Returns the AST of the module being scheduled
- property state: tvm.tir.schedule.state.ScheduleState¶
Returns the ScheduleState in the current schedule class
- property trace: Optional[tvm.tir.schedule.trace.Trace]¶
Returns the internally maintained trace of scheduling program execution
- property func_working_on: Optional[tvm.ir.expr.GlobalVar]¶
Returns the GlobalVar of the func that the schedule is currently working on
- work_on(func_name: str) None ¶
Instruct the schedule to work on a function in the IRModule.
By default, the schedule works on the function with the name “main”, or the only function in the IRModule if there is only one. If there is multiple functions in the IRModule, and none of their names are “main”, users will have to call this method to explicitly specify which function to work on.
This sugar function will guide the GetBlock method if its func_name is not specified.
- Parameters
func_name (str) – The name of the function to work on.
- copy() tvm.tir.schedule.schedule.Schedule ¶
Returns a copy of the schedule, including both the state and the symbol table, * guaranteeing that * 1) SRef tree is completely reconstructed; * 2) The IRModule being scheduled is untouched; * 3) All the random variables are valid in the copy, pointing to the corresponding sref * reconstructed
- Returns
copy – A new copy of the schedule
- Return type
- seed(seed: int) None ¶
Seed the randomness
- Parameters
seed (int) – The new random seed, -1 if use device random, otherwise non-negative
- fork_seed() int ¶
Returns a forked random state as seed for new schedules
- Returns
seed – The forked random state, not the same as the current random state
- Return type
- show(*args, **kwargs) None ¶
A sugar for print highlighted TVM script.
All parameters are forwarded to the underlying Module.show and Trace.show methods.
- get(rand_var_or_sref: Union[tvm.ir.expr.PrimExpr, tvm.tir.schedule.schedule.BlockRV, tvm.tir.schedule.schedule.LoopRV, tvm.tir.block_scope.StmtSRef]) Optional[Union[int, tvm.tir.stmt.Block, tvm.tir.stmt.For]] ¶
Returns: - the corresponding Block that a BlockRV evaluates to; - the corresponding For that a LoopRV evaluates to; - the corresponding integer that a ExprRV evaluates to; - the corresponding Block that a block sref points to; - the corresponding For that a loop sref points to;
- get_sref(rand_var_or_stmt: Union[tvm.tir.schedule.schedule.BlockRV, tvm.tir.schedule.schedule.LoopRV, tvm.tir.stmt.Block, tvm.tir.stmt.For]) Optional[tvm.tir.block_scope.StmtSRef] ¶
Returns the corresponding sref to the given 1) LoopRV 2) BlockRV 3) Block 4) For
- remove_rv(rand_var: Union[tvm.ir.expr.PrimExpr, tvm.tir.schedule.schedule.BlockRV, tvm.tir.schedule.schedule.LoopRV]) None ¶
Remove a random variable from the symbol table
- sample_categorical(candidates: List[int], probs: List[float], decision: Optional[int] = None) tvm.ir.expr.PrimExpr ¶
Sample an integer given the probability distribution
- sample_perfect_tile(loop: tvm.tir.schedule.schedule.LoopRV, n: int, max_innermost_factor: int = 16, decision: Optional[List[int]] = None) List[tvm.ir.expr.PrimExpr] ¶
Sample the factors to perfect tile a specific loop
- Parameters
- Returns
result – A list of length n, the random perfect tile sizes sampled
- Return type
List[ExprRV]
- sample_partitioned_tile(loop: tvm.tir.schedule.schedule.LoopRV, n: int, partition_pos: int = 0, innerpart_factor: int = 1, decision: Optional[List[int]] = None) List[tvm.ir.expr.PrimExpr] ¶
Sample the factors to a partitioned tile for a specific loop
- Parameters
- Returns
result – A list of length n, the random partitioned tile sizes sampled
- Return type
List[ExprRV]
- sample_compute_location(block: Union[tvm.tir.schedule.schedule.BlockRV, str], decision: Optional[int] = None) tvm.tir.schedule.schedule.LoopRV ¶
Sample a compute-at location of the given block
- get_block(name: str, func_name: Optional[str] = None) tvm.tir.schedule.schedule.BlockRV ¶
Retrieve a block in a specific function with its name
By default, if func_name is not specified, the schedule will search for the block in the function that is currently being “worked on”. To switch the function to be worked on, use work_on before calling this method.
- get_loops(block: Union[tvm.tir.schedule.schedule.BlockRV, str]) List[tvm.tir.schedule.schedule.LoopRV] ¶
Get the parent loops of the block in its scope, from outer to inner
- get_child_blocks(block_or_loop: Union[tvm.tir.schedule.schedule.BlockRV, tvm.tir.schedule.schedule.LoopRV]) List[tvm.tir.schedule.schedule.BlockRV] ¶
Get the leaf blocks of a specific block/loop
- get_producers(block: Union[tvm.tir.schedule.schedule.BlockRV, str]) List[tvm.tir.schedule.schedule.BlockRV] ¶
Get the producers of a specific block
- get_consumers(block: Union[tvm.tir.schedule.schedule.BlockRV, str]) List[tvm.tir.schedule.schedule.BlockRV] ¶
Get the consumers of a specific block
- get_output_blocks(scope_block: Union[tvm.tir.schedule.schedule.BlockRV, str]) List[tvm.tir.schedule.schedule.BlockRV] ¶
Get the list of output blocks within the given scope An output block is a block which has atleast one buffer being written to, but is not allocated within the PrimFunc
- merge(*loops: List[tvm.tir.schedule.schedule.LoopRV]) tvm.tir.schedule.schedule.LoopRV ¶
Merge a list of loops into one. The loops under their LCA requires: 1) Under the same scope. 2) Can’t have annotations or thread bindings. 3) Start with 0 and have same extent and same nesting depth. 4) From target loop to their LCA, The inner loop must be the only child of the outer loop.
- Parameters
*loops (List[LoopRV]) – The loops to be merged
- Returns
fused_loop – The new loop after merge
- Return type
Examples
Before applying merge, in TensorIR, the IR is:
@T.prim_func def before_merge(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do fuse:
sch = tir.Schedule(before_fuse) i1, _ = sch.get_loops(sch.get_block("B")) i2, _ = sch.get_loops(sch.get_block("C")) sch.merge(i1, i2) print(sch.mod["main"].script())
After applying fuse, the IR becomes:
@T.prim_func def after_fuse(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) # the 2 loops are merged into 1 for i_m in range(128): for j in range(128): with T.block("B"): vi, vj = T.axis.remap("SS", [i_m, j]) T.reads(A[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A[vi, vj] * T.float32(2) for j in range(128): with T.block("C"): vi, vj = T.axis.remap("SS", [i_m, j]) T.reads(A[vi, vj]) T.writes(C[vi, vj]) C[vi, vj] = A[vi, vj] * T.float32(2)
- fuse(*loops: List[tvm.tir.schedule.schedule.LoopRV], preserve_unit_iters: bool = True) tvm.tir.schedule.schedule.LoopRV ¶
Fuse a list of consecutive loops into one. It requires: 1) The loops can’t have annotations or thread bindings. 2) The (i+1)-th loop must be the only child of the i-th loop. 3) All loops must start with 0. 4) The domain of a loop to be fused cannot depend on another loop to be fused.
- Parameters
*loops (List[LoopRV]) – The loops to be fused
- Returns
fused_loop – The new loop after fusion
- Return type
Examples
Before applying fuse, in TensorIR, the IR is:
@T.prim_func def before_fuse(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do fuse:
sch = tir.Schedule(before_fuse) i, j = sch.get_loops(sch.get_block("B")) sch.fuse(i, j) print(sch.mod["main"].script())
After applying fuse, the IR becomes:
@T.prim_func def after_fuse(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) # the 2 loops are fused into 1 for i_j_fused in T.serial(0, 16384): with T.block("B"): vi = T.axis.S(128, T.floordiv(i_j_fused, 128)) vj = T.axis.S(128, T.floormod(i_j_fused, 128)) B[vi, vj] = A[vi, vj] * 2.0
- split(loop: tvm.tir.schedule.schedule.LoopRV, factors: List[Optional[Union[int, tvm.ir.expr.PrimExpr]]], preserve_unit_iters: bool = True, disable_predication: bool = False) List[tvm.tir.schedule.schedule.LoopRV] ¶
Split a loop into a list of consecutive loops. It requires: 1) The loop can’t have annotation or thread binding. 2) The loop must start with 0. Predicates may be added to ensure the total loop numbers keeps unchanged. In factors, at most one of the factors can be None, which will be automatically inferred.
- Parameters
loop (LoopRV) – The loop to be split
factors (List[Union[int, ExprRV, None]]) – The splitting factors Potential inputs are: - None - ExprRV - Positive constant integers
preserve_unit_iters (bool) – Whether or not to preserve unit iterators in block bindings
disable_predication (bool) –
If enabled, don’t create a predicate for guarding the loop. This can be useful when splitting with scalable factors that the schedule writer knows are divisible by the loop bound.
Warning: enabling this feature may result in incorrect code generation if not used carefully.
- Returns
split_loops – The new loops after split
- Return type
List[LoopRV]
Examples
Before split, in TensorIR, the IR is:
@T.prim_func def before_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do split:
sch = tir.Schedule(before_split) i, j = sch.get_loops(sch.get_block("B")) sch.split(i, factors=[2, 64]) print(sch.mod["main"].script())
After applying split, the IR becomes:
@T.prim_func def after_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) # the original loop is split into 2 loops for i0, i1, j in T.grid(2, 64, 128): with T.block("B"): vi = T.axis.S(128, i0 * 64 + i1) vj = T.axis.S(128, j) B[vi, vj] = A[vi, vj] * 2.0
- loop_partition(loop: tvm.tir.schedule.schedule.LoopRV, factors: List[Optional[Union[int, tvm.ir.expr.PrimExpr]]], preserve_unit_iters: bool = True) List[tvm.tir.schedule.schedule.LoopRV] ¶
Partition a loop into a list of consecutive loops. It requires: 1) The loop can’t have annotation or thread binding. Predicates may be added to ensure the total loop numbers keeps unchanged. In factors, at most one of the factors can be None, which will be automatically inferred.
- Parameters
- Returns
partition_loops – The new loops after partition
- Return type
List[LoopRV]
Examples
Before partition, in TensorIR, the IR is:
@T.prim_func def before_partition(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do partition:
sch = tir.Schedule(before_partition) i, j = sch.get_loops(sch.get_block("B")) sch.partition(i, factors=[2, 64]) print(sch.mod["main"].script())
After applying partition, the IR becomes:
def after_partition(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) # the original loop is partition into 3 loops with T.block("root"): T.reads() T.writes() with T.block("B_i_common"): T.reads() T.writes() with T.block("B_i0_partition"): T.reads() T.writes() for i0, j in T.grid(2, 128): with T.block("B_i0"): vi, vj = T.axis.remap("SS", [i0, j]) T.reads(A[0:2, 0:128]) T.writes(B[0:2, 0:128]) B[vi, vj] = A[vi, vj] * T.float32(2) with T.block("B_i1_partition"): T.reads() T.writes() for i1 in range(2, 66): for j in range(128): with T.block("B_i1"): vi, vj = T.axis.remap("SS", [i1, j]) T.reads(A[2:66, 0:128]) T.writes(B[2:66, 0:128]) B[vi, vj] = A[vi, vj] * T.float32(2) with T.block("B_partition_2"): T.reads() T.writes() for i2 in range(66, 128): for j in range(128): with T.block("B_i2"): vi, vj = T.axis.remap("SS", [i2, j]) T.reads(A[66:128, 0:128]) T.writes(B[66:128, 0:128]) B[vi, vj] = A[vi, vj] * T.float32(2)
- reorder(*ordered_loops: List[tvm.tir.schedule.schedule.LoopRV]) None ¶
Reorder a list of loops. It doesn’t require the loops to be consecutive. It requires: 1) The loops are in the same chain. That means: the loops can be ordered to [l_1, l_2, … , l_n] where l_i is an ancestor of l_{i+1} and there are only single-branch loops between l_1 and l_n (which also indicates they are under the same scope). 2) After reordering, the domain of an outer loop cannot depend on any of the inner loops. 3) For every block under the loop nests, its block binding must be affine, and the block variables must be either data parallel or reduction. 4) No duplicated loops are allowed in the arguments.
- Parameters
*ordered_loops (List[LoopRV]) – The loops in the new order
Examples
Before reorder, in TensorIR, the IR is:
@T.prim_func def before_reorder(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do reorder:
sch = tir.Schedule(before_reorder) i, j = sch.get_loops(sch.get_block("B")) sch.reorder(j, i) print(sch.mod["main"].script())
After applying reorder, the IR becomes:
@T.prim_func def after_reorder(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) # Here j and i are reordered for j, i in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
- reorder_block_iter_var(block: tvm.tir.schedule.schedule.BlockRV, new_order: List[int]) None ¶
Reorder the itervars inside a given block.
- Parameters
Examples
Before reorder_block_iter_var, in TensorIR, the IR is:
@T.prim_func def matmul( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32"), ) -> None: for i, j, k in T.grid(128, 128, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
Create the schedule and do reorder_block_iter_var:
sch = tir.Schedule(matmul) C = sch.get_block("C") sch.reorder_block_iter_var(C, [2, 1, 0])
After applying reorder_block_iter_var, the IR becomes:
@T.prim_func def matmul_after_reorder_block_iter_var( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32"), ): for i, j, k in T.grid(128, 128, 128): with T.block("C"): vk, vj, vi = T.axis.remap("RSS", [k, j, i]) T.reads(A[vi, vk], B[vj, vk]) T.writes(C[vi, vj]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
See also
- add_unit_loop(block_or_loop: Union[tvm.tir.schedule.schedule.LoopRV, tvm.tir.schedule.schedule.BlockRV]) tvm.tir.schedule.schedule.LoopRV ¶
Create a new unit loop on top of the specific block or loop.
- Parameters
block_or_loop (Union[LoopRV, BlockRV]) – The block above which the new loop is created
- Returns
new_loop – The new unit loop
- Return type
Examples
Before add_unit_loop, in TensorIR, the IR is:
@T.prim_func def before_add_unit_loop( A: T.Buffer((), "int32"), B: T.Buffer((), "int32"), C: T.Buffer((), "int32"), ) -> None: with T.block("C"): vi = T.axis.spatial(1, 0) C[()] = A[()] + B[()]
Create the schedule and do add-unit-loop:
sch = tir.Schedule(before_add_unit_loop) sch.add_unit_loop(sch.get_block("C")) print(sch.mod["main"].script())
After applying add-unit-loop, the IR becomes:
@T.prim_func def after_add_unit_loop( A: T.Buffer((), "int32"), B: T.Buffer((), "int32"), C: T.Buffer((), "int32"), ) -> None: for u in T.serial(1): with T.block("C"): vi = T.axis.spatial(1, 0) C[()] = A[()] + B[()]
- parallel(loop: tvm.tir.schedule.schedule.LoopRV) None ¶
Parallelize the input loop. It requires: 1) The scope block that the loop is in should have stage-pipeline property 2) All the blocks under the loop are complete blocks or reduction blocks, and have affine bindings 3) For each block under the loop, the loop can only be contained in data-parallel block iters’ bindings
- Parameters
loop (LoopRV) – The loop to be parallelized
Examples
Before parallel, in TensorIR, the IR is:
@T.prim_func def before_parallel(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do parallel:
sch = tir.Schedule(before_parallel) i, j = sch.get_loops(sch.get_block("B")) sch.parallel(i)
After applying parallel, the IR becomes:
@T.prim_func def after_parallel(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i in T.parallel(0, 128): for j in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
- vectorize(loop: tvm.tir.schedule.schedule.LoopRV) None ¶
Vectorize the input loop. It requires: 1) The scope block that the loop is in should have stage-pipeline property 2) All the blocks under the loop are complete blocks or reduction blocks, and have affine bindings 3) For each block under the loop, the loop can only be contained in data-parallel block iters’ bindings
- Parameters
loop (LoopRV) – The loop to be vectorized
Examples
Before vectorize, in TensorIR, the IR is:
@T.prim_func def before_vectorize(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do vectorize:
sch = tir.Schedule(before_vectorize) i, j = sch.get_loops(sch.get_block("B")) sch.vectorize(j)
After applying vectorize, the IR becomes:
@T.prim_func def after_vectorize(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i in T.serial(0, 128): for j in T.vectorized(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
- bind(loop: tvm.tir.schedule.schedule.LoopRV, thread_axis: str) None ¶
Bind the input loop to the given thread axis. It requires: 1) The scope block that the loop is in should have stage-pipeline property 2) All the blocks under the loop are complete blocks or reduction blocks, and have affine bindings 3) For each block under the loop, if the thread axis starts with “threadIdx`, the loop can only be contained in data-parallel block iter and reduction block iters’ bindings. Otherwise the loop can only be contained in data-parallel block iters’ bindings
- Parameters
Examples
Before bind, in TensorIR, the IR is:
@T.prim_func def before_bind(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do bind:
sch = tir.Schedule(before_bind) i, j = sch.get_loops(sch.get_block("B")) sch.bind(i, "blockIdx.x") sch.bind(j, "threadIdx.x")
After applying bind, the IR becomes:
@T.prim_func def after_bind(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i in T.thread_binding(0, 128, thread = "blockIdx.x"): for j in T.thread_binding(0, 128, thread = "threadIdx.x"): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
- unroll(loop: tvm.tir.schedule.schedule.LoopRV) None ¶
Unroll the input loop. It requires nothing
- Parameters
loop (LoopRV) – The loop to be unrolled
Examples
Before unroll, in TensorIR, the IR is:
@T.prim_func def before_unroll(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do unroll:
sch = tir.Schedule(before_unroll) i, j = sch.get_loops(sch.get_block("B")) sch.unroll(i)
After applying unroll, the IR becomes:
@T.prim_func def after_unroll(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i in T.unroll(0, 128): for j in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
- cache_read(block: Union[tvm.tir.schedule.schedule.BlockRV, str], read_buffer_index: Union[int, str, tvm.tir.buffer.Buffer], storage_scope: str, consumer_blocks: Optional[List[Union[tvm.tir.schedule.schedule.BlockRV, str]]] = None) tvm.tir.schedule.schedule.BlockRV ¶
Create a block that reads a buffer region into a read cache. It requires:
There is at most one block who write the buffer in the scope.
The scope block have stage-pipeline property.
- Parameters
block (Union[BlockRV, str]) – The consumer block of the target buffer.
buffer (Union[int, str, Buffer]) – The index of the buffer in block’s read region, the unique name of a read buffer in the block, or a Buffer object that is within the blocks read region.
storage_scope (str) – The target storage scope.
consumer_blocks (Optional[List[Union[BlockRV, str]]]) – An optional list of consumers that should read from the cache. If not specified, all consumers will use the cache.
- Returns
cached_block – The block of the cache stage
- Return type
Examples
Before cache_read, in TensorIR, the IR is:
@T.prim_func def before_cache_read(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and cache_read:
sch = tir.Schedule(before_cache_read) block_b = sch.get_block("B") sch.cache_read(block_b, 0, "local") print(sch.mod["main"].script())
After applying cache_read, the IR becomes:
@T.prim_func def after_cache_read(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) A_local = T.alloc_buffer((128, 128), scope="local") for i, j in T.grid(128, 128): with T.block("A_local"): vi, vj = T.axis.remap("SS", [i, j]) A_local[vi, vj] = A[vi, vj] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A_local[vi, vj] * 2.0
- cache_write(block: Union[tvm.tir.schedule.schedule.BlockRV, str], write_buffer_index: Union[int, str, tvm.tir.buffer.Buffer], storage_scope: str, consumer_blocks: Optional[List[Union[tvm.tir.schedule.schedule.BlockRV, str]]] = None) tvm.tir.schedule.schedule.BlockRV ¶
Create a block that reads a buffer region into a write cache. It requires:
There is only one block who write the buffer in the scope.
The scope block have stage-pipeline property.
- Parameters
block (Union[BlockRV, str]) – The producer block of the target buffer.
write_buffer_index (int) – The index of the buffer in block’s write region, the unique name of a write buffer in the block, or a Buffer object that is within the blocks write region.
storage_scope (str) – The target storage scope.
consumer_blocks (Optional[List[Union[BlockRV, str]]]) – An optional list of consumers that should read directly from the cache. If not specified, all consumers will read from the original buffer.
- Returns
cached_block – The block of the cache stage
- Return type
Examples
Before cache_write, in TensorIR, the IR is:
@T.prim_func def before_cache_write(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and cache_write:
sch = tir.Schedule(before_cache_write) block_b = sch.get_block("B") sch.cache_write(block_b, 0, "local") print(sch.mod["main"].script())
After applying cache_write, the IR becomes:
@T.prim_func def after_cache_write(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) B_local = T.alloc_buffer((128, 128), scope="local") for i, j in T.grid(128, 128): with T.block("A_local"): vi, vj = T.axis.remap("SS", [i, j]) B_local[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = B_local[vi, vj]
- reindex_cache_read(block: Union[tvm.tir.schedule.schedule.BlockRV, str], read_buffer_index: int, storage_scope: str, index_map: Union[tvm.tir.function.IndexMap, Callable]) tvm.tir.schedule.schedule.BlockRV ¶
Create a block that reads a buffer region into a read cache using customized indices specified by index map. The read region of the buffer must be a single point.
The cache stage block follows the original order of loops and block itervars in the block. If a block itervar does not appear in the buffer access region, it and its corresponding loop variables will be omitted. User can then use transform_block_layout primitive to reorder the block itervars and surrounding loops of the cache read/write block.
Unlike cache_read, reindex_cache_read only supports single consumer, please use cache_read when there are multiple consumers.
- Parameters
block (BlockRV) – The consumer block of the target buffer.
read_buffer_index (int) – The index of the buffer in block’s read region.
storage_scope (str) – The target storage scope.
index_map (Union[IndexMap, Callable]) – User defined indices to access allocated cache buffer, maps from block iter vars.
- Returns
cached_block – The block of the cache stage
- Return type
Examples
Before reindex_cache_read, in TensorIR, the IR is:
@T.prim_func def before_reindex_cache_read(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and reindex_cache_read:
sch = tir.Schedule(before_cache_read) block_b = sch.get_block("B") sch.reindex_cache_read(block_b, 0, "local", lambda vi, vj: (vj, vi)) print(sch.mod["main"].script())
After applying reindex_cache_read, the IR becomes:
@T.prim_func def after_reindex_cache_read(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) A_local = T.alloc_buffer((128, 128), scope="local") for i, j in T.grid(128, 128): with T.block("A_local"): vi, vj = T.axis.remap("SS", [i, j]) A_local[vj, vi] = A[vi, vj] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A_local[vj, vi] * 2.0
- reindex_cache_write(block: Union[tvm.tir.schedule.schedule.BlockRV, str], write_buffer_index: int, storage_scope: str, index_map: Union[Callable, tvm.tir.function.IndexMap]) tvm.tir.schedule.schedule.BlockRV ¶
Create a block that reads a buffer region into a write cache using customized indices specified by index map. The write region of the buffer must be a single point.
The cache stage block follows the original order of loops and block itervars in the block. If a block itervar does not appear in the buffer access region, it and its corresponding loop variables will be omitted. User can then use transform_block_layout primitive to reorder the block itervars and surrounding loops of the cache read/write block.
Unlike cache_write, reindex_cache_write only supports single consumer, please use cache_write when there are multiple consumers.
- Parameters
block (Union[BlockRV, str]) – The consumer block of the target buffer.
write_buffer_index (int) – The index of the buffer in block’s write region.
storage_scope (str) – The target storage scope.
index_map (Union[Callable, IndexMap]) – User defined indices to access allocated cache buffer, maps from block iter vars.
consumer_blocks (Optional[List[Union[BlockRV, str]]]) – An optional list of consumers that should read directly from the cache. If not specified, all consumers will read from the original buffer.
- Returns
cached_block – The block of the cache stage
- Return type
Examples
Before reindex_cache_write, in TensorIR, the IR is:
@T.prim_func def before_reindex_cache_write(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and reindex_cache_write:
sch = tir.Schedule(before_cache_write) block_b = sch.get_block("B") sch.reindex_cache_write(block_b, 0, "local", lambda vi, vj: (vi // 2, vi % 2, vj)) print(sch.mod["main"].script())
After applying reindex_cache_write, the IR becomes:
@T.prim_func def after_cache_write(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (64, 2, 128)) B_local = T.alloc_buffer((128, 128), scope="local") for i, j in T.grid(128, 128): with T.block("A_local"): vi, vj = T.axis.remap("SS", [i, j]) B_local[vi % 2, vi // 2, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = B_local[vi % 2, vi // 2, vj]
- cache_inplace(block: Union[tvm.tir.schedule.schedule.BlockRV, str], read_buffer_index: Union[int, str, tvm.tir.buffer.Buffer], storage_scope: str) List[tvm.tir.schedule.schedule.BlockRV] ¶
Create blocks that reads & write a buffer region into a cache block. It requires the target block both read & write the target buffer. Mainly for inplace operation.
- Parameters
block (Union[BlockRV, str]) – The target block operates on the target buffer.
read_buffer_index (int) – The index of the buffer in block’s read region, the unique name of a read buffer in the block, or a Buffer object that is within the blocks read region.
storage_scope (str) – The target storage scope.
- Returns
cached_blocks – The blocks of the cache stage, read cache first, write cache second
- Return type
List[BlockRV]
Examples
Before cache_inplace, in TensorIR, the IR is:
@T.prim_func def before_cache_inplace(data_io: T.Buffer((64), "int32")): for i0 in T.serial(1): with T.block("A"): T.reads(data_io[:64]) T.writes(data_io[:64]) T.evaluate(T.call_extern("call_impl", data_io.data, dtype=""))
Create the schedule and cache_inplace:
sch = tir.Schedule(before_cache_inplace) block_a = sch.get_block("A") sch.cache_inplace(block_a, 0, "local") print(sch.mod["main"].script())
After applying cache_inplace, the IR becomes:
@T.prim_func def cache_inplace(data_io: T.Buffer(64, "int32")) -> None: data_io_local = T.alloc_buffer([64], dtype="int32", scope="local") for i0 in T.serial(1): for ax0 in T.serial(64): with T.block("data_io_local"): v0 = T.axis.spatial(64, ax0) T.reads(data_io[v0]) T.writes(data_io_local[v0]) data_io_local[v0] = data_io[v0] with T.block("A"): T.reads(data_io_local[0 : 64]) T.writes(data_io_local[0 : 64]) T.evaluate(T.call_extern("call_impl", data_io_local.data, dtype="")) for ax0 in T.serial(64): with T.block("data_io_local"): v0 = T.axis.spatial(64, ax0) T.reads(data_io_local[v0]) T.writes(data_io[v0]) data_io[v0] = data_io_local[v0]
- cache_index(block: Union[tvm.tir.schedule.schedule.BlockRV, str], storage_scope: str, cse_thresh: int = 0) List[tvm.tir.schedule.schedule.BlockRV] ¶
Create a block to cache precomputed index for later use. if there is no index computation, keep unchanged.
- Parameters
- Returns
cached_blocks – The blocks of the stage writing the cache buffers
- Return type
List[BlockRV]
Examples
Before cache_inplace, in TensorIR, the IR is:
@T.prim_func def resize(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (1, 3, 40, 40)) B = T.match_buffer(b, (1, 3, 80, 80)) for i0, i1, i2, i3 in T.grid(1, 3, 80, 80): with T.block("A"): n, c, vi, vj = T.axis.remap("SSSS", [i0, i1, i2, i3]) B[n, c, vi, vj] = A[n, c, vi//4 + vj//4, vj//2]
Create the schedule and cache_index:
sch = tir.Schedule(resize) block_a = sch.get_block("A") sch.cache_index(block_a, "global", 1) print(sch.mod["main"].script())
After applying cache_index, the IR becomes:
@T.prim_func def resize_cache_index( A: T.Buffer((1, 3, 40, 40), "float32"), B: T.Buffer((1, 3, 80, 80), "float32") ) -> None: index_var_0 = T.alloc_buffer([80, 80], dtype="int32", strides=[1]) index_var_1 = T.alloc_buffer([80], dtype="int32", strides=[1]) for ax0, ax1 in T.grid(80, 80): with T.block("index_0"): v0 = T.axis.spatial(80, ax0) v1 = T.axis.spatial(80, ax1) T.reads() T.writes(index_var_0[v0, v1]) index_var_0[v0, v1] = v0 // 4 + v1 // 4 for ax0 in T.serial(80): with T.block("index_1"): v0 = T.axis.spatial(80, ax0) T.reads() T.writes(index_var_1[v0]) index_var_1[v0] = v0 // 2 for i0, i1, i2, i3 in T.grid(1, 3, 80, 80): with T.block("A"): n, c, vi, vj = T.axis.remap("SSSS", [i0, i1, i2, i3]) T.reads(A[n, c, vi // 4 + vj // 4, vj // 2]) T.writes(B[n, c, vi, vj]) B[n, c, vi, vj] = A[n, c, index_var_0[vi, vj], index_var_1[vj]]
- reindex(block: Union[tvm.tir.schedule.schedule.BlockRV, str], buffer: Union[Tuple[str, int], str, tvm.tir.buffer.Buffer]) tvm.tir.schedule.schedule.BlockRV ¶
Create a block that read/write a buffer region into a read/write cache with reindexing. The layout of the cache will be the same as by the iterators of the block that reads/writes the buffer. It requires: 1) There is only one block who reads/writes the target buffer 2) There is only one buffer load/store of this buffer in the block
- Parameters
block (Union[BlockRV, str]) – The block that accesses the target buffer. If a string, this must uniquely identify a block.
buffer (Union[Tuple[str,int], Buffer, str]) –
The buffer to be transformed, or a specification of how to identify the buffer to be transformed.
If buffer if a tuple of
(str,int)
, the first item should be either “read” or “write”, and the second item is an index into the block’s read or write regions.If buffer is a string, it is the name of the buffer, which must exist within the reads/writes of the block. In addition, the reads/writes of the block may not contain more than one buffer with this name.
If buffer is a Buffer object, it must exist within the reads/writes of the block.
- Returns
reindex_block – The block of the reindex stage
- Return type
Examples
Before reindex, in TensorIR, the IR is:
@T.prim_func def before_reindex( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32") ) -> None: for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vj, vi] * 2.0
Create the schedule and do reindex:
sch = tir.Schedule(before_reindex) block = sch.get_block("B") sch.reindex(block, ("read", 0))
After applying reindex, the IR becomes:
@T.prim_func def after_reindex( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32") ) -> None: A_reindex = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block("A_reindex"): vi, vj = T.axis.remap("SS", [i, j]) A_reindex[vi, vj] = A[vj, vi] for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A_reindex[vi, vj] * 2.0
- compute_at(block: Union[tvm.tir.schedule.schedule.BlockRV, str], loop: tvm.tir.schedule.schedule.LoopRV, preserve_unit_loops: bool = False, index: int = - 1) None ¶
Compute-At. Move a producer block under the specific loop, and regenerate the loops induced by the block so that the buffer region produced by the producer block could cover those regions consumed by its consumer blocks under the given loop. It requires:
block and loop are under the same scope, loop is not the ancestor of block
The scope block has stage-pipeline property
3) The subtree of the scope block, where the given block is in, satisfies the compact dataflow condition. i.e. all the blocks in the scope block’s subtree must be either complete block or reduction block
4) The block is not an output block with regard to the scope block, i.e. the buffers written by the block are allocated under the scope block
All the consumers of the block are under the given loop
- Parameters
loop (LoopRV) – The loop where the block to be moved under
preserve_unit_loops (bool) – Whether to keep the trivial loops whose extents are 1
index (int) – The block index of the loop body subtree blocks: - index = -1 means inserted into the last possible insertion point; - index = -2 means inserted into the first possible insertion point; - Otherwise, index is a nonnegative number that indicates the insertion point
Examples
Before compute-at, in TensorIR, the IR is:
@T.prim_func def before_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do compute-at:
sch = tir.Schedule(before_compute_at) block = sch.get_block("B") loop, _ = sch.get_loops(sch.get_block("C")) sch.compute_at(block, loop, preserve_unit_loops=False) print(sch.mod["main"].script())
After applying compute-at, the IR becomes:
@T.prim_func def after_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i in T.serial(0, 128): for j in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for j in T.serial(0, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
- reverse_compute_at(block: Union[tvm.tir.schedule.schedule.BlockRV, str], loop: tvm.tir.schedule.schedule.LoopRV, preserve_unit_loops: bool = False, index: int = - 1) None ¶
Reverse-Compute-At. Move a consumer block under the specific loop, and regenerate the loops induced by the block so that the buffer region consumed by the consumer block could cover those regions produced by its producer blocks under the given loop. It requires:
block and loop are under the same scope, loop is not the ancestor of block
The scope block has stage-pipeline property
3) The subtree of the scope block, where the given block is in, satisfies the compact dataflow condition. i.e. all the blocks in the scope block’s subtree must be either complete block or reduction block
All the producers of the block are under the given loop
- Parameters
loop (LoopRV) – The loop where the block to be moved under
preserve_unit_loops (bool) – Whether to keep the trivial loops whose extents are 1
index (int) – The block index of the loop body subtree blocks: - index = -1 means inserted into the last possible insertion point; - index = -2 means inserted into the first possible insertion point; - Otherwise, index is a nonnegative number that indicates the insertion point
Examples
Before reverse-compute-at, in TensorIR, the IR is:
@T.prim_func def before_reverse_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do reverse-compute-at:
sch = tir.Schedule(before_reverse_compute_at) block = sch.get_block("C") loop, _ = sch.get_loops(sch.get_block("B")) sch.reverse_compute_at(block, loop, preserve_unit_loops=False) print(sch.mod["main"].script())
After applying reverse-compute-at, the IR becomes:
@T.prim_func def after_reverse_compute_at(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i in T.serial(0, 128): for j in T.serial(0, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for j in T.serial(0, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
- compute_inline(block: Union[tvm.tir.schedule.schedule.BlockRV, str]) None ¶
Inline a block into its consumer(s). It requires:
The block is a complete non-root block, which only produces one buffer
The block must not be the only leaf in the scope.
The body of the block must be a BufferStore statement in the form of,
A[i, j, k, ...] = ...
where the indices of the LHS are all distinct atomic variables, and no variables other than those indexing variables are allowed in the statement.
Examples
Before compute-inline, in TensorIR, the IR is:
@T.prim_func def before_inline(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do compute-inline:
sch = tir.Schedule(before_inline) sch.compute_inline(sch.get_block("B")) print(sch.mod["main"].script())
After applying compute-inline, the IR becomes:
@T.prim_func def after_inline(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 + 1.0
- reverse_compute_inline(block: Union[tvm.tir.schedule.schedule.BlockRV, str]) None ¶
Inline a block into its only producer. It requires:
The block is a complete non-root block, which only produces and consumes one buffer
The block must not be the only leaf in the scope.
The only producer of the block is a read-after-write producer and a complete non-root block
The body of the block must be a BufferStore statement in the form of,
B[f(i, j, k, ...)] = g(i, j, k, A[i, j, k, ...] ...)
where the indices of each BufferLoad on the RHS are all distinct atomic variables, and no variables other than those indexing variables are allowed in the statement.
Examples
Before reverse-compute-inline, in TensorIR, the IR is:
@T.prim_func def before_inline(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do reverse-compute-inline:
sch = tir.Schedule(before_inline) sch.reverse_compute_inline(sch.get_block("C")) print(sch.mod["main"].script())
After applying reverse-compute-inline, the IR becomes:
@T.prim_func def after_inline(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = A[vi, vj] * 2.0 + 1.0
- decompose_reduction(block: Union[tvm.tir.schedule.schedule.BlockRV, str], loop: tvm.tir.schedule.schedule.LoopRV) tvm.tir.schedule.schedule.BlockRV ¶
Decompose a reduction block into two separate blocks.
The init block, which is translated from the init statement of the reduction block;
The update block, which is the original block without init statement.
The init block is inserted right before the given loop.
The schedule primitive requires:
The input block is a reduction block.
The input loop is the ancestor of the block.
The input loop is not lower than all the loops related to reduce block var.
- Parameters
- Returns
init_block – The init block
- Return type
Examples
Before decompose-reduction, in TensorIR, the IR is:
@T.prim_func def before_decompose(a: ty.handle, c: ty.handle) -> None: A = tir.match_buffer(a, [128, 128]) B = tir.match_buffer(b, [128, 128]) C = tir.match_buffer(c, [128, 128]) for i, j, k in tir.grid(128, 128, 128): with tir.block([128, 128, tir.reduce_axis(0, 128)], "C") as [vi, vj, vk]: with tir.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
Create the schedule and do decompose-reduction with specified loop:
sch = tir.Schedule(before_decompose) C = sch.get_block("C") i, j, k = sch.get_loops(C) sch.decompose_reduction(C, i) print(sch.mod["main"].script())
After applying decompose-reduction, the IR becomes:
@T.prim_func def after_decompose(a: ty.handle, c: ty.handle) -> None: A = tir.match_buffer(a, [128, 128]) B = tir.match_buffer(b, [128, 128]) C = tir.match_buffer(c, [128, 128]) for i in tir.serial(128): for j in tir.serial(128): with tir.block([128, 128]) as [vi, vj]: C[vi, vj] = 0.0 for i, j, k in tir.grid(128, 128, 128): with tir.block([128, 128, tir.reduce_axis(0, 128)], "C") as [vi, vj, vk]: C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
- rfactor(loop: tvm.tir.schedule.schedule.LoopRV, factor_axis: int) tvm.tir.schedule.schedule.BlockRV ¶
Factorize an associative reduction block by the specified loop.
An associative reduction cannot be parallelized directly, because it leads to potential race condition during accumulation. Alternatively, the reduction could be factorized on a loop with the following steps: - Step 1: evenly slice the reduction into n separate chunks, where n is the loop extent - Step 2: compute the chunks separately and write the result into n intermediate buffers; - Step 3: accumulate the n separate buffer into the result buffer. Note that the Step 2 above introduces opportunities for parallelization.
RFactor is a schedule primitive that implements the transformation described above: Given a block that writes to buffer B, it factorizes a loop of extent n.
For example, the pseudocode below accumulates B[i] = sum(A[i, : , : ]):
for i in range(128): # loop i is a data parallel loop for j in range(128): # loop j is a reduction loop for k in range(128): # loop k is a reduction loop B[i] = B[i] + A[i, j, k]
Suppose RFactor is applied on the innermost loop k and factor_axis = 1. RFactor then creates an intermediate buffer and two blocks.
1. The intermediate buffer, or “rf-buffer” is a buffer of rank ndim(B) + 1 and size size(B) * n, whose shape expands from shape(B) by adding an axis of n at the position specified by factor_axis. For example,
shape(B) = [1, 2, 3], factor_axis = 0 => shape(B_rf) = [n, 1, 2, 3]
shape(B) = [1, 2, 3], factor_axis = 1 => shape(B_rf) = [1, n, 2, 3]
shape(B) = [1, 2, 3], factor_axis = 2 => shape(B_rf) = [1, 2, n, 3]
shape(B) = [1, 2, 3], factor_axis = 3 => shape(B_rf) = [1, 2, 3, n]
2. The rfactor block, or “rf-block”, is a block that writes to the rf-buffer without accumulating over the loop k, i.e. the loop k is converted from a reduction loop to a data parallel loop. In our example, the rf-block is:
B_rf = np.zeros((128, 128)) # the rf-buffer for k in range(128): # loop k is converted to a data parallel loop for i in range(128): # loop i is a data parallel loop (unchanged) for j in range(128): # loop j is a reduction loop (unchanged) B_rf[i, k] = B_rf[i, k] + A[i, j, k]
3. The write-back block, or wb-block, is a block that accumulates the rf-buffer into the result buffer. All the reduction loops are removed except the loop k for accumulation. In our example, the wb-block is:
for i in range(128): # loop i is a data parallel loop (unchanged) # loop j is removed because it is a reduction loop for k in range(128): # loop k is a reduction loop (unchanged) B[i] = B[i] + B_rf[i, k]
- Parameters
- Returns
rf_block – The block which computes partial results over each slices (i.e., the first block as described in the above illustration)
- Return type
Examples
Before rfactor, in TensorIR, the IR is:
@T.prim_func def before_rfactor(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128)) B = T.match_buffer(b, (128,)) for ii, i, j in T.grid(128, 128, 128): with T.block("B"): vii, vi, vj = T.axis.remap("SRR", [ii, i, j]) with T.init(): B[vii] = 0.0 B[vii] = B[vii] + A[vii, vi, vj]
Create the schedule and do rfactor:
sch = tir.Schedule(before_rfactor) _, _, k = sch.get_loops(sch.get_block("B")) sch.rfactor(k, 0) print(sch.mod["main"].script())
After applying rfactor, the IR becomes:
@T.prim_func def after_rfactor(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128, 128]) B = T.match_buffer(b, [128]) B_rf = T.alloc_buffer([128, 128]) for i2, ii, i in T.grid(128, 128, 128): with T.block("B_rf"): vi2, vii, vi = T.axis.remap("SSR", [i2, ii, i]) with T.init(): B_rf[vi2, vii] = 0.0 B_rf[vi2, vii] = (B_rf[vi2, vii] + A[vii, vi, vi2]) for ii, i2 in T.grid(128, 128): with T.block("B"): vii, vi2 = T.axis.remap("SR", [ii, i2]) with T.init(): B[vii] = 0.0 B[vii] = B[vii] + B_rf[vi2, vii]
Note
Rfactor requires: 1) loop has only one child block, and it is a reduction block; 2) loop is a reduction loop, i.e. the loop variable is bound to only reduction variables in the block binding; 3) loop is not parallelized, vectorized, unrolled or bound to any thread axis; 4) The block scope that loop is in is a staged-pipeline; 5) The outermost loop outside the reduction block should has the reduction block as its first child block; 6) The outermost reduction loop should have only one child block; 7) An unary extent loop that is not bound to any reduction or data parallel variables in the block binding should not appear under some reduction loop; 8) The reduction block should write to only one buffer, and its init and body are both simple BufferStore`s, and the pattern is registered as an associative reducer. The pre-defined patterns include: plus, multiplication, min and max; 9) Each of the loops on top of the block cannot be bound to a data parallel and a reduction block binding at the same time; 10) `factor_axis should be in range [-ndim(B) - 1, ndim(B)], where B is the buffer that the reduction block writes to. Negative indexing is normalized according to numpy convention.
- storage_align(block: Union[tvm.tir.schedule.schedule.BlockRV, str], buffer_index: int, axis: int, factor: int, offset: int) None ¶
Set alignment requirement for specific dimension such that stride[axis] == k * factor + offset for some k. This is useful to set memory layout for more friendly memory access pattern. For example, we can set alignment to be factor=2, offset=1 to avoid bank conflict for thread access on higher dimension in GPU shared memory.
- Parameters
Examples
Before storage_align, in TensorIR, the IR is:
@T.prim_func def before_storage_align(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do storage_align:
sch = tir.Schedule(before_storage_align) sch.storage_align(sch.get_block("B"), buffer_index=0, axis=0, factor=128, offset=1) print(sch.mod["main"].script())
After applying storage_align, the IR becomes:
@T.prim_func def after_storage_align(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.alloc_buffer((128, 128)) C = T.match_buffer(c, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): T.block_attr({"buffer_dim_align": [[[0, 128, 1]]]}) vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
After lowering passes, buffer B will have strides as [129, 1].
Note
Storage_align requires the buffer to be an intermediate buffer defined via alloc_buffer.
- set_scope(block: Union[tvm.tir.schedule.schedule.BlockRV, str], buffer_index: Union[int, str, tvm.tir.buffer.Buffer], storage_scope: str) None ¶
Set the storage scope of a buffer, where the buffer is specified by the a block and a write-index.
- Parameters
Examples
Before set_scope, in TensorIR, the IR is:
@T.prim_func def before_set_scope( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B = T.alloc_buffer((128, 128), dtype="float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do set_scope:
sch = tir.Schedule(before_set_scope) sch.set_scope(sch.get_block("B"), buffer_index=0, storage_scope="shared") print(sch.mod["main"].script())
After applying set_scope, the IR becomes:
@T.prim_func def after_set_scope( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B_shared = T.alloc_buffer([128, 128], dtype="float32", scope="shared") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B_shared[vi, vj] = A[vi, vj] * T.float32(2) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B_shared[vi, vj] + T.float32(1)
Note
set_scope requires the buffer to be an intermediate buffer defined via alloc_buffer.
- unsafe_set_dtype(block: Union[tvm.tir.schedule.schedule.BlockRV, str], buffer_index: int, dtype: str) None ¶
Set the data type of a buffer, where the buffer is specified by the a block and write-index.
This schedule primitive is unsafe and may change the correctness of program because of type conversion, please use with caution.
- Parameters
Examples
Before unsafe_set_dtype, in TensorIR, the IR is:
@T.prim_func def before_set_dtype( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B = T.alloc_buffer((128, 128), dtype="float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j] C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do unsafe_set_dtype:
sch = tir.Schedule(before_set_dtype) sch.unsafe_set_dtype("B", buffer_index=0, dtype="float16") print(sch.mod["main"].script())
After applying set_dtype, the IR becomes:
@T.prim_func def after_set_dtype( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B = T.alloc_buffer((128, 128), dtype="float16") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = T.cast(A[vi, vj] * 2.0, "float16") for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j] C[vi, vj] = T.cast(B[vi, vj], "float32") + 1.0
Note
unsafe_set_dtype requires the buffer to be an intermediate buffer defined via alloc_buffer.
- blockize(target: Union[tvm.tir.schedule.schedule.LoopRV, List[tvm.tir.schedule.schedule.BlockRV]], preserve_unit_iters: bool = True) tvm.tir.schedule.schedule.BlockRV ¶
Convert multiple blocks or the subtree rooted at a specific loop into a block.
- Parameters
- Returns
result – The new block.
- Return type
Examples
Before blockize, in TensorIR, the IR is:
@T.prim_func def before_blockize( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32") ) -> None: for i_0, j_0, i_1, j_1 in T.grid(8, 8, 16, 16): with T.block("B"): vi = T.axis.spatial(128, i_0 * 16 + i_1) vj = T.axis.spatial(128, j_0 * 16 + j_1) T.reads(A[vi, vj]) T.writes(B[vi, vj]) B[vi, vj] = A[vi, vj] * T.float32(2)
Create the schedule and do set_scope:
sch = tir.Schedule(before_blockize) B = sch.get_block("B") _, _, i1, _ = sch.get_loops(B) sch.blockize(i1) print(sch.mod["main"].script())
After applying blockize, the IR becomes:
@T.prim_func def after_blockize( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32") )-> None: for i_0, j_0 in T.grid(8, 8): with T.block("B_o"): vio, vjo = T.axis.remap("SS", [i_0, j_0]) T.reads(A[vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16]) T.writes(B[vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16]) for i_1, j_1 in T.grid(16, 16): with T.block("B"): vi, vj = T.axis.remap("SS", [i_1, j_1]) T.reads(A[vio * 16 + vi, vjo * 16 + vj]) T.writes(B[vio * 16 + vi, vjo * 16 + vj]) B[vio * 16 + vi, vjo * 16 + vj] = A[vio * 16 + vi, vjo * 16 + vj] * T.float32(2)
Note
blockize requires there is exactly one block under the given loop and the bindings of the block are divisible by the subspace represented by the loops starting at the given loop.
- tensorize(block_or_loop: Union[tvm.tir.schedule.schedule.BlockRV, tvm.tir.schedule.schedule.LoopRV], tensor_intrin: str, preserve_unit_iters: bool = True) None ¶
Tensorize the computation enclosed by loop with the tensor intrinsic.
- Parameters
Examples
Before tensorize, in TensorIR, the IR is:
@T.prim_func def before_tensorize( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32"), ) -> None: # body # with T.block("root") for i_0, j_0, k_0, i_1, j_1, k_1 in T.grid(8, 8, 8, 16, 16, 16): with T.block("update"): vi = T.axis.spatial(128, i_0 * 16 + i_1) vj = T.axis.spatial(128, j_0 * 16 + j_1) vk = T.axis.reduce(128, k_0 * 16 + k_1) T.reads(C[vi, vj], A[vi, vk], B[vj, vk]) T.writes(C[vi, vj]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk]
Declare and register the tensor intrinsic:
@T.prim_func def mma_desc(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16), align=128, offset_factor=1) B = T.match_buffer(b, (16, 16), align=128, offset_factor=1) C = T.match_buffer(c, (16, 16), align=128, offset_factor=1) with T.block("root"): T.reads(C[0 : 16, 0 : 16], A[0 : 16, 0 : 16], B[0 : 16, 0 : 16]) T.writes(C[0 : 16, 0 : 16]) for i, j, k in T.grid(16, 16, 16): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def mma_intrin(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16), align=128, offset_factor=1) B = T.match_buffer(b, (16, 16), align=128, offset_factor=1) C = T.match_buffer(c, (16, 16), align=128, offset_factor=1) with T.block("root"): T.reads(C[0 : 16, 0 : 16], A[0 : 16, 0 : 16], B[0 : 16, 0 : 16]) T.writes(C[0 : 16, 0 : 16]) T.evaluate( T.tvm_mma_sync( C.data, C.elem_offset // 256, A.data, A.elem_offset // 256, B.data, B.elem_offset // 256, C.data, C.elem_offset // 256, dtype="handle", ) ) tir.TensorIntrin.register("test_mma_intrin", mma_desc, mma_intrin)
Create the schedule and do tensorize:
sch = tir.Schedule(before_tensorize) update = sch.get_block("update") _, _, _, i1, _, _ = sch.get_loops(update) sch.tensorize(i1, "test_mma_intrin") print(sch.mod["main"].script())
After applying tensorize, the IR becomes:
@T.prim_func def after_tensorize( A: T.Buffer((128, 128), "float32"), B: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32"), ) -> None: # body # with T.block("root") for i_0, j_0, k_0 in T.grid(8, 8, 8): with T.block("update_o"): vio, vjo, vko = T.axis.remap("SSR", [i_0, j_0, k_0]) T.reads( C[vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16], A[vio * 16 : vio * 16 + 16, vko * 16 : vko * 16 + 16], B[vjo * 16 : vjo * 16 + 16, vko * 16 : vko * 16 + 16], ) T.writes(C[vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16]) A_1 = T.match_buffer( A[vio * 16 : vio * 16 + 16, vko * 16 : vko * 16 + 16], [16, 16], dtype="float32", offset_factor=1, ) B_1 = T.match_buffer( B[vjo * 16 : vjo * 16 + 16, vko * 16 : vko * 16 + 16], [16, 16], dtype="float32", offset_factor=1, ) C_1 = T.match_buffer( C[vio * 16 : vio * 16 + 16, vjo * 16 : vjo * 16 + 16], [16, 16], dtype="float32", offset_factor=1, ) T.evaluate( T.tvm_mma_sync( C_1.data, C_1.elem_offset // 256, A_1.data, A_1.elem_offset // 256, B_1.data, B_1.elem_offset // 256, C_1.data, C_1.elem_offset // 256, dtype="handle", ) )
- annotate(block_or_loop: Union[tvm.tir.schedule.schedule.BlockRV, tvm.tir.schedule.schedule.LoopRV], ann_key: str, ann_val: Union[str, int, float, tvm.ir.expr.PrimExpr, List[Union[str, int, float, tvm.ir.expr.PrimExpr]], Dict[str, Union[str, int, float, tvm.ir.expr.PrimExpr, List[Union[str, int, float, tvm.ir.expr.PrimExpr]]]]]) None ¶
Annotate a block/loop with a key value pair
- Parameters
Examples
Before annotate, in TensorIR, the IR is:
@T.prim_func def before_annotate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do annotate:
sch = tir.Schedule(before_annotate) sch.annotate(sch.get_block("B"), "ann_key", "ann_value") print(sch.mod["main"].script())
After applying annotate, the IR becomes:
@T.prim_func def after_annotate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.block_attr({"ann_key", "ann_value"}) B[vi, vj] = A[vi, vj] * 2.0
- unannotate(block_or_loop: Union[tvm.tir.schedule.schedule.BlockRV, tvm.tir.schedule.schedule.LoopRV], ann_key: str) None ¶
Unannotate a block/loop’s annotation with key ann_key
- Parameters
Examples
Before unannotate, in TensorIR, the IR is:
@T.prim_func def before_unannotate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.block_attr({"ann_key", "ann_value"}) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do annotate:
sch = tir.Schedule(before_unannotate) sch.unannotate(sch.get_block("B"), "ann_key") print(sch.mod["main"].script())
After applying unannotate, the IR becomes:
@T.prim_func def after_unannotate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
- transform_layout(block: Union[tvm.tir.schedule.schedule.BlockRV, str], buffer: Union[Tuple[str, int], str, tvm.tir.buffer.Buffer], index_map: Union[tvm.tir.function.IndexMap, Callable], pad_value: Optional[Union[int, float, tvm.ir.expr.PrimExpr, tvm.tir.function.IndexMap, Callable]] = None, *, assume_injective_transform: bool = False) None ¶
Apply a transformation represented by IndexMap to buffer
- Parameters
block (Union[BlockRV, str]) – The block that accesses the target buffer. If a string, this must uniquely identify a block.
buffer (Union[Tuple[str,int], Buffer, str]) –
The buffer to be transformed, or a specification of how to identify the buffer to be transformed.
If buffer if a tuple of
(str,int)
, the first item should be either “read” or “write”, and the second item is an index into the block’s read or write regions.If buffer is a string, it is the name of the buffer, which must exist within the reads/writes of the block. In addition, the reads/writes of the block may not contain more than one buffer with this name.
If buffer is a Buffer object, it must exist within the reads/writes of the block.
index_map (Union[IndexMap, Callable]) –
The transformation to apply.
If index_map is a callable, and the returned list contains IndexMap.AXIS_SEPARATOR, the SetAxisSeparators primitive will be called in addition to the TransformLayout primitive.
pad_value (Optional[Union[int, float, PrimExpr, IndexMap, Callable]]) –
The value to be used for any padding introduced by the transformation. If the schedule contains a producer block for the specified buffer, the pad value will be written as part of the producer block if possible, or after the producer block otherwise. Otherwise, if the buffer is an input, will insert an annotation block to state that the padding contains the known value.
The pad value may not contain instances of BufferLoad, except where it loads a value from the buffer being transformed (e.g. to create a circular buffer with padding that consists of repeated elements).
Note: If applied to an input buffer, the calling scope is responsible for ensuring that the pad_value is present. Algebraic symplifications, branch elimination, and other optimizations may assume that this precondition is met, and may result in incorrect results being returned.
If None, the transformation may not introduce padding.
If an int, float or PrimExpr, the transformation is the specific value to be present in the padding.
If an IndexMap or Callable, the transformation is the value to be present in the padding in terms of the transformed index.
assume_injective_transform (bool) – If set to true, the schedule primitive will assume the index_map is injective and skip checking overlapping of the mapped indices. This can be useful for complicated index_map that the analysis does not cover. It is the callers’ responsibility to ensure the index map is injective, otherwise, the correctness of the schedule is not guaranteed.
Examples
Before transform_layout, in TensorIR, the IR is:
@T.prim_func def before_transform_layout(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do transform_layout:
sch = tir.Schedule(before_storage_align) sch.transform_layout(sch.get_block("B"), buffer=("write",0), index_map=lambda m, n: (m // 16, n // 16, m % 16, n % 16)) print(sch.mod["main"].script())
After applying transform_layout, the IR becomes:
@T.prim_func def two_elementwise_transformed_intermediate_buffer(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") B = T.alloc_buffer((8, 8, 16, 16), "float32") C = T.match_buffer(c, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi // 16, vj // 16, vi % 16, vj % 16] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi // 16, vj // 16, vi % 16, vj % 16] + 1.0
- transform_block_layout(block: Union[tvm.tir.schedule.schedule.BlockRV, str], index_map: Union[tvm.tir.function.IndexMap, Callable]) None ¶
Apply a transformation represented by IndexMap to block
- Parameters
Examples
Before transform_block_layout, in TensorIR, the IR is:
@T.prim_func def before_transform_block_layout( A: T.Buffer((16, 16), "float32"), B: T.Buffer((16, 16), "float32") ) -> None: for i, j in T.grid(16, 16): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0
Create the schedule and do transform_block_layout:
sch = tir.Schedule(before_transform_block_layout) sch.transform_block_layout(sch.get_block("B"), lambda i, j: (i * 16 + j,)) print(sch.mod["main"].script())
After applying transform_block_layout, the IR becomes:
@T.prim_func def after_transform_block_layout( A: T.Buffer((16, 16), "float32"), B: T.Buffer((16, 16), "float32") ) -> None: for i in range(256): with T.block("B"): vi, = T.axis.remap("S", [i]) B[vi // 16, vi % 16] = A[vi // 16, vi % 16] * 2.0
- set_axis_separator(block: Union[tvm.tir.schedule.schedule.BlockRV, str], buffer: Union[Tuple[str, int], str, tvm.tir.buffer.Buffer], axis_separators: Optional[List[int]]) None ¶
Set the axis separator of a buffer, where the buffer is specified by a block and a read or write index.
- Parameters
block (Union[BlockRV, str]) – The block that accesses the target buffer. If a string, this must uniquely identify a block.
buffer (Union[Tuple[str,int], Buffer, str]) –
The buffer to be transformed, or a specification of how to identify the buffer to be transformed.
If buffer if a tuple of
(str,int)
, the first item should be either “read” or “write”, and the second item is an index into the block’s read or write regions.If buffer is a string, it is the name of the buffer, which must exist within the reads/writes of the block. In addition, the reads/writes of the block may not contain more than one buffer with this name.
If buffer is a Buffer object, it must exist within the reads/writes of the block.
axis_separators (Optional[List[int]]) – The axis separators.
Examples
Before set_axis_separator, in TensorIR, the IR is:
@T.prim_func def before_set_axis_separator( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B = T.alloc_buffer((128, 128), dtype="float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do set_axis_separator:
sch = tir.Schedule(before_set_axis_separator) sch.set_axis_separators(sch.get_block("B"), buffer=("write", 0), axis_separators=[1]) print(sch.mod["main"].script())
After applying set_axis_separator, the IR becomes:
@T.prim_func def after_set_axis_separators( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B = T.alloc_buffer([128, 128], dtype="float32", axis_separators=[1]) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * T.float32(2) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + T.float32(1)
- decompose_padding(block: Union[tvm.tir.schedule.schedule.BlockRV, str], loop: tvm.tir.schedule.schedule.LoopRV) tvm.tir.schedule.schedule.BlockRV ¶
Decompose a block of padding computation pattern into two separate blocks.
The block which fill const pad values into full write region;
The block which fill in-bound values into region where pad predicate is true.
The pad value filling block is inserted right before the given loop.
The schedule primitive requires:
The input block is a complete block.
The input loop is the ancestor of the block.
The input block is a block which match padding pattern.
- Parameters
- Returns
pad_value_block – The block filling const pad values.
- Return type
Examples
Before decompose-padding, in TensorIR, the IR is:
@T.prim_func def before_decompose(x: T.Buffer(128, "int32"), y: T.Buffer(140, "int32")): for i in range(140): with T.block("block"): vi = T.axis.remap("S", [i]) y[vi] = T.if_then_else(vi >= 6 and vi < 134, x[vi - 6], 0, dtype="int32")
Create the schedule and do decompose-padding with specified loop:
sch = tir.Schedule(before_decompose, debug_mask="all") block = sch.get_block("block") sch.decompose_padding(block, sch.get_loops(block)[0]) print(sch.mod["main].script())
After applying decompose-padding, the IR becomes:
@T.prim_func def after_decompose(x: T.Buffer(128, "int32"), y: T.Buffer(140, "int32")): for i in T.serial(140): with T.block("block_pad_const"): vi = T.axis.spatial(140, i) y[vi] = 0 for i in T.serial(128): with T.block("block"): vi = T.axis.spatial(128, i) y[vi + 6] = x[vi]
- can_decompose_padding(block: Union[tvm.tir.schedule.schedule.BlockRV, str], loop: tvm.tir.schedule.schedule.LoopRV) bool ¶
Check whether the block match padding pattern and can be decomposed.
- pad_einsum(block: Union[tvm.tir.schedule.schedule.BlockRV, str], padding: List[int]) None ¶
Pad the computation of Einsum.
On a block with trivial binding, this primitive pads the iteration domain of the block by the given padding factors, for example, 127 -> 128, 132 -> 144 when padding factor is 16. Extra producer and consumer padding blocks will be generated to avoid out-of-bound buffer access.
Einsum pattern means all the indices on the buffer access are either by constants (e.g. B[0]) or by variables (e.g. B[i]), but not by composite expressions (e.g. B[i + 1]).
- Parameters
Examples
Before applying pad-einsum, in TensorIR, the IR is:
@T.prim_func def before_pad_einsum( A: T.Buffer((127, 127), "float32"), B: T.Buffer((127, 127), "float32"), C: T.Buffer((127, 127), "float32"), ) -> None: for i0, i1, i2 in T.grid(127, 127, 127): with T.block("C_shared"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) with T.init(): C[i, j] = T.float32(0) C[i, j] = C[i, j] + A[i, k] * B[k, j]
Create the schedule and do pad-einsum with specified block:
sch = tir.Schedule(before_pad_einsum, debug_mask="all") block = sch.get_block("C_shared") sch.pad_einsum(block, [32, 32, 32]) print(sch.mod["main"].script())
After applying decompose-padding, the IR becomes:
@T.prim_func def main( A: T.Buffer((127, 127), "float32"), B: T.Buffer((127, 127), "float32"), C: T.Buffer((127, 127), "float32"), ): # with T.block("root"): A_pad = T.alloc_buffer((128, 128)) B_pad = T.alloc_buffer((128, 128)) C_pad = T.alloc_buffer((128, 128)) for i0, i1 in T.grid(128, 128): with T.block("A_pad"): v0, v1 = T.axis.remap("SS", [i0, i1]) A_pad[v0, v1] = T.if_then_else( v0 < 127 and v1 < 127, A[v0, v1], T.float32(0), ) for i0, i1 in T.grid(128, 128): with T.block("B_pad"): v0, v1 = T.axis.remap("SS", [i0, i1]) B_pad[v0, v1] = T.if_then_else( v0 < 127 and v1 < 127, B[v0, v1], T.float32(0), ) for i0, i1, i2 in T.grid(128, 128, 128): with T.block("C_shared"): i, j, k = T.axis.remap("SSR", [i0, i1, i2]) with T.init(): C_pad[i, j] = T.float32(0) C_pad[i, j] = C_pad[i, j] + A_pad[i, k] * B_pad[k, j] for i0, i1 in T.grid(127, 127): with T.block("C_pad"): v0, v1 = T.axis.remap("SS", [i0, i1]) C[v0, v1] = C_pad[v0, v1]
- rolling_buffer(block: Union[tvm.tir.schedule.schedule.BlockRV, str], write_buffer_index: int) None ¶
Compute the target buffer via rolling buffering, select the outermost rollable axis with a positive bound overlap that appears in the block’s ancestor loops as rolling axis, fold and circularize the buffer along the rolling dimension, append block predicate to avoid recomputing overlapping elements. It requires:
The block is not an output block and has only RAW dependencies.
The buffer to be an intermediate buffer defined via alloc_buffer.
3) The LCA of the producer and consumer of the buffer is a for loop, typically, the producer and consumer of the buffer are cascaded through compute_at.
4) The access region of the buffer has at least one dimension that contains a positive bound overlap.
- Parameters
Examples
Before rolling_buffer, in TensorIR, the IR is:
@T.prim_func def before_rolling_buffer( A: T.Buffer((12, 12), "int8"), C: T.Buffer((8, 8), "int8") ) -> None: # body # with T.block("root") B = T.alloc_buffer([10, 10], dtype="int8") for i0, i1 in T.grid(2, 2): for ax0, ax1, ax2, ax3 in T.grid(6, 6, 3, 3): with T.block("B"): ax0_1 = T.axis.spatial(10, i0 * 4 + ax0) ax1_1 = T.axis.spatial(10, i1 * 4 + ax1) rv0, rv1 = T.axis.remap("RR", [ax2, ax3]) B[ax0_1, ax1_1] = T.max( B[ax0_1, ax1_1], A[ax0_1 + rv0, ax1_1 + rv1] ) for ax0, ax1, ax2, ax3 in T.grid(4, 4, 3, 3): with T.block("C"): ax0_1 = T.axis.spatial(8, i0 * 4 + ax0) ax1_1 = T.axis.spatial(8, i1 * 4 + ax1) rv0, rv1 = T.axis.remap("RR", [ax2, ax3]) C[ax0_1, ax1_1] = T.max( C[ax0_1, ax1_1], B[ax0_1 + rv0, ax1_1 + rv1] )
Create the schedule and do rolling_buffer:
sch = tir.Schedule(before_rolling_buffer) sch.rolling_buffer(sch.get_block("B"), write_buffer_index=0) print(sch.mod["main"].script())
After applying rolling_buffer, the IR becomes:
@T.prim_func def after_rolling_buffer( A: T.Buffer((12, 12), "int8"), C: T.Buffer((8, 8), "int8") ) -> None: # body # with T.block("root") B = T.alloc_buffer([6, 10], dtype="int8") for i0, i1 in T.grid(2, 2): for ax0, ax1, ax2, ax3 in T.grid(6, 6, 3, 3): with T.block("B"): T.where((i0 < 1 or 2 <= ax0) and (i1 < 1 or 2 <= ax1)) ax0_1 = T.axis.spatial(10, i0 * 4 + ax0) ax1_1 = T.axis.spatial(10, i1 * 4 + ax1) rv0, rv1 = T.axis.remap("RR", [ax2, ax3]) B[ax0_1 % 6, ax1_1] = T.max( B[ax0_1 % 6, ax1_1], A[ax0_1 + rv0, ax1_1 + rv1] ) for ax0, ax1, ax2, ax3 in T.grid(4, 4, 3, 3): with T.block("C"): ax0_1 = T.axis.spatial(8, i0 * 4 + ax0) ax1_1 = T.axis.spatial(8, i1 * 4 + ax1) rv0, rv1 = T.axis.remap("RR", [ax2, ax3]) C[ax0_1, ax1_1] = T.max( C[ax0_1, ax1_1], B[ax0_1 % 6 + rv0, ax1_1 + rv1] )
Note
The region_cover property of the consumer block of the target buffer will become false.
- unsafe_hide_buffer_access(block: tvm.tir.schedule.schedule.BlockRV, buf_type: str, buf_index_array: List[int]) None ¶
Hide some buffer access in a given block. This is an unsafe schedule primitive.
- Parameters
Note
This schedule primitive is unsafe, and may fail dependency analysis. One use case of unsafe_hide_buffer_access is to hide the buffer access to indices buffers (e.g. in sparse computation) so that we can further tensorize the block (the indices buffers appeared in read/write regions may fail the pattern matching in tensorize primitive, and hide the access to these buffers could address the issue).
- annotate_buffer_access(block: tvm.tir.schedule.schedule.BlockRV, buffer_index: int, buf_type: str, gen_new_ranges: Callable) None ¶
Annotate the read or write region of a block
- Parameters
block (BlockRV) – The block to be annotated
buffer_index (int) – The index of the buffer in block’s read or write region
buf_type (str) – The buffer type: “read” or “write”
gen_new_ranges (Callable) – A function that takes the block’s iter_vars and returns a Tuple[Union[PrimExpr, Tuple[PrimExpr, PrimExpr]], …] which defines the new read or write region for the buffer. Each element in the tuple can be: - A single PrimExpr representing the iter_var itself - A tuple of two PrimExprs representing the range (begin, end)
Examples
Annotate a 2D read region for a buffer. Before annotate_buffer_access, in TensorIR, the IR is:
@T.prim_func def before_annotate_buffer_access( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
Create the schedule and do annotate_buffer_access:
sch = tir.Schedule(before_annotate_buffer_access) block = sch.get_block("B") sch.annotate_buffer_access(block, 0, "read", lambda vi, vj: ((vi - 1, vi + 1), (vj - 1, vj + 1))) print(sch.mod["main"].script())
After applying annotate_buffer_access, the IR becomes:
@T.prim_func def after_annotate_buffer_access( A: T.Buffer((128, 128), "float32"), C: T.Buffer((128, 128), "float32") ) -> None: B = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi - 1:vi + 1, vj - 1:vj + 1]) T.writes(B[vi, vj]) T.block_attr({"explicit_read_region": 0}) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0
This annotates the read region for buffer A (index 0) in block “B” to be [vi-1:vi+1, vj-1:vj+1] for each (vi, vj) in the block’s iteration domain.
Note
This function allows manual specification of read or write regions, which can be useful in cases where the compiler cannot accurately infer the access pattern, such as complex data-dependent accesses. It overrides the automatically inferred region for the specified buffer. The function adds an annotation to the block, indicating that an explicit region has been provided for the buffer at the given index. This annotation is used in the CompactBufferAllocation pass to respect the manually specified region instead of relying on automatic inference.
Caution should be exercised when using this function, as incorrect annotations may lead to incorrect code generation or runtime errors. It’s crucial to ensure that the specified region covers all actual reads or writes performed by the block for the given buffer.
- exception tvm.tir.schedule.ScheduleError¶
Error that happens during TensorIR scheduling.
- class tvm.tir.schedule.ScheduleDebugMask(value)¶
The bitmask of the debug_mask flag in the ScheduleState class.
If the debug_mask flag has a certain bit on, then the correpsonding verification pass will be conducted. For example, if (debug_mask & VERIFY_SREF_TREE) != 0, then the correctness of the sref tree will be verified after each schedule instruction.
- VERIFY_SREF_TREE¶
Verify the correctness of the sref tree
- Type
int = 1
- VERIFY_CACHED_FLAGS¶
Verify the correctness of affine_binding, region_cover and stage_pipeline
- Type
int = 2
- class tvm.tir.schedule.ScheduleState(mod: Union[tvm.tir.function.PrimFunc, tvm.ir.module.IRModule], *, debug_mask: Union[str, int] = 'none', enable_check: bool = True)¶
The state of scheduling, which exposes a Replace method as the primary resort for all the scheduling primitives to manipulate the TensorIR.
The data structure contains the following information 1) The AST being scheduled (mod) 2) The sref tree of schedulable statements (indicated by the srefs) 3) The dependency information of each block scope (block_info) 4) A reverse mapping from the AST nodes to that in the sref tree (get_sref) 5) A debug flag, if set, extra checking is enabled (debug_mask) 6) A enable check flag, if False, some prerequisite checks are disabled.
- Parameters
mod (IRModule) – The AST of the module being scheduled
debug_mask (int) – Do extra correctness checking after the object construction and each time after calling the Replace method.
enable_check (bool) – Indicates whether we enable prerequisite checks for some schedule primitives or not, defaults to True.
- get_sref(stmt: Union[tvm.tir.stmt.Block, tvm.tir.stmt.For]) Optional[tvm.tir.block_scope.StmtSRef] ¶
Return the corresponding sref that points to the stmt
- get_block_scope(block_sref: tvm.tir.block_scope.StmtSRef) tvm.tir.block_scope.BlockScope ¶
Get the BlockScope correpsonding to the block sref
- replace(src_sref: tvm.tir.block_scope.StmtSRef, tgt_stmt: Union[tvm.tir.stmt.Block, tvm.tir.stmt.For, tvm.tir.stmt.BlockRealize], block_sref_reuse: Optional[Dict[tvm.tir.stmt.Block, tvm.tir.stmt.Block]] = None) None ¶
Replace the part of the AST, as being pointed to by src_sref, with a specific statement tgt_stmt, and maintain the sref tree accordingly. Replace will try to perform copy on write as much as possible when the ScheduleState holds the only copy to the IRModule and IR nodes.
Only 3 types of replacements are allowed: from src_sref->stmt to tgt_stmt. 1) Block -> Block 2) Loop -> Loop 3) Loop -> BlockRealize
- Parameters
src_sref (StmtSRef) – The sref to the statement to be replaced in the TensorIR AST
tgt_stmt (Union[Block, For, BlockRealize]) – The statement to be replaced to
block_sref_reuse (Optional[Dict[Block, Block]] = None) – Maps an old block (to be replaced in the subtree under src_sref->stmt) to a new block (replaced to, in the subtree under tgt_stmt), and enforces reuse of srefs between them (rather than create new srefs) i.e. after being replaced, the sref that points to the old block will point to the new one
Note
The reuse of loop srefs are detected automatically according to the reuse of loop vars.
- class tvm.tir.schedule.Trace(insts: List[tvm.tir.schedule.instruction.Instruction], decisions: Dict[tvm.tir.schedule.instruction.Instruction, Any])¶
An execution trace of a scheduling program.
A trace has two parts: 1) The instructions invoked so far 2) The random decisions made upon those instructions, if any
A trace can be serialized to: 1) Roundtrippable JSON format: can be saved to file and loaded back 2) Python syntax: allows users to copy-paste the trace to reproduce the scheduling process
A trace can be applied to a TensorIR schedule by re-applying all its instructions possibly with their decisions accordingly. Re-sampling is invoked if a sampling instruction doesn’t have its corresponding decision; Otherwise the existing decision will be reused accordingly.
- insts¶
The instructions invoked so far in the program execution
- Type
List[Instruction]
- decisions¶
The random decisions made upon those instructions
- Type
Dict[Instruction, DECISION_TYPE]
- get_decision(inst: tvm.tir.schedule.instruction.Instruction) Optional[Any] ¶
Retrieve the decision made on a specific instruction
- Parameters
insts (Instruction) – The instruction whose decision is to be retrieved
- Returns
decision – The corresponding decision; None if there is no decision made on the instruction
- Return type
Optional[DECISION_TYPE]
- append(inst: tvm.tir.schedule.instruction.Instruction, decision: Optional[Any] = None) None ¶
Append a new instruction to the trace
- Parameters
insts (Instruction) – The new instruction to be appended
decision (Optional[DECISION_TYPE] = None) – The random decision made on this instruction
- pop() Optional[tvm.tir.schedule.instruction.Instruction] ¶
Remove the last instruction, along with the decision made on that instruction, if any
- Returns
popped_inst – Returns the instruction removed; NullOpt if the trace is empty
- Return type
- apply_to_schedule(sch: Schedule, remove_postproc: bool, decision_provider: Optional[Callable[[tvm.tir.schedule.instruction.Instruction, List[Any], List[Any], Any], Any]] = None) None ¶
Apply the trace to a TensorIR schedule
- Parameters
sch (Schedule) – The schedule to be applied onto
remove_postproc (bool) – If postprocessing instructions are removed
decision_provider (Optional[Callable] = None) – A callback that allows users to mutate decisions on the fly when applying instructions. The signature of the callback is: - The 1st argument: The instruction - The 2nd argument: The input random variables - The 3rd argument: The attributes - The 4th argument: The decision - Return: A new decision
- as_json(remove_postproc: bool = False) Any ¶
Serialize the trace as a JSON-style object
- Parameters
remove_postproc (bool = False) – If postprocessing instructions are removed
- Returns
json – The JSON-style object
- Return type
JSON_TYPE
- as_python(remove_postproc: bool = False) List[str] ¶
Serialize the trace as a sequence of python statements
- Parameters
remove_postproc (bool = False) – If postprocessing instructions are removed
- Returns
py_stmts – A sequence of python statements
- Return type
List[str]
- with_decision(inst: tvm.tir.schedule.instruction.Instruction, decision: Any, remove_postproc: bool) tvm.tir.schedule.trace.Trace ¶
Create a new trace with an instruction whose decision is changed, assuming this instruction exists in the resulting trace
- Parameters
inst (Instruction) – The instruction whose decision is to be changed
decision (DECISION_TYPE) – The decision to be changed to
remove_postproc (bool) – If postprocessing instructions are removed
- Returns
trace – The new trace with the decision changed
- Return type
- simplified(remove_postproc: bool) tvm.tir.schedule.trace.Trace ¶
Simplify the trace with dead-code elimination
- static apply_json_to_schedule(json_obj: Any, sch: Schedule) None ¶
Apply a JSON-serialized trace to a TensorIR schedule
- Parameters
json_obj (JSON_TYPE) – The JSON-serialized trace
sch (Schedule) – The TensorIR schedule