tvm.tir
Namespace for Tensor-level IR
- class tvm.tir.Buffer
Symbolic data buffer in TVM.
Buffer provide a way to represent data layout specialization of data structure in TVM.
Do not construct directly, use
decl_buffer()
instead. See the documentation ofdecl_buffer()
for more details.See also
decl_buffer
Declare a buffer
- access_ptr(access_mask, ptr_type='handle', content_lanes=1, offset=0, extent=None)
Get an access pointer to the head of buffer.
This is the recommended method to get buffer data ptress when interacting with external functions.
- Parameters:
access_mask (int) – The access pattern MASK. Indicate whether the access will read or write to the data content.
ptr_type (str, optional) – The data type of the result pointer. Do not specify unless we want to cast pointer to specific type.
content_lanes (int, optional) – The number of lanes for the data type. This value is greater than one for vector types.
offset (Expr, optional) – The offset of pointer. We can use it to offset by the number of elements from the address of ptr.
extent (Expr, optional) – The extent of pointer.
Examples
# Get access ptr for read buffer.access_ptr("r") # Get access ptr for read/write with bitmask buffer.access_ptr(Buffer.READ | Buffer.WRITE) # Get access ptr for read/write with str flag buffer.access_ptr("rw") # Get access ptr for read with offset buffer.access_ptr("r", offset = 100) # Get access ptr for read with extent buffer.access_ptr("r", extent = 100)
- vload(begin, dtype=None, predicate=None)
Generate an Expr that loads dtype from begin index.
- Parameters:
begin (Array of Expr) – The beginning index in unit of Buffer.dtype
dtype (str) – The data type to be loaded, can be vector type which have lanes that is multiple of Buffer.dtype
predicate (Optional[PrimExpr]) – A vector mask of boolean values indicating which lanes of a vector are to be loaded. The number lanes of the mask must be equal to the number of lanes being loaded.
- Returns:
load – The corresponding load expression.
- Return type:
Expr
- vstore(begin, value, predicate=None)
Generate a Stmt that store value into begin index.
- Parameters:
begin (Array of Expr) – The beginning index in unit of Buffer.dtype
value (Expr) – The value to be stored.
predicate (Optional[PrimExpr]) – A vector mask of boolean values indicating which lanes of a vector are to be stored. The number lanes of the mask must be equal to the number of lanes in value.
- Returns:
store – The corresponding store stmt.
- Return type:
- scope()
Return the storage scope associated with this buffer. :returns: scope – The storage scope associated with this buffer. :rtype: str
- get_flattened_buffer()
Generate a Buffer that is a flattened version of this buffer.
- Returns:
flattened – The corresponding flat buffer.
- Return type:
- offset_of(indices)
Determine the offset of the provided indices in the flattened buffer.
- tvm.tir.decl_buffer(shape, dtype=None, name='buffer', data=None, strides=None, elem_offset=None, scope='', data_alignment=-1, offset_factor=0, buffer_type='', axis_separators=None, span=None)
Declare a new symbolic buffer.
Normally buffer is created automatically during lower and build. This is only needed if user want to specify their own buffer layout.
See the note below for detailed discussion on usage of buffer.
- Parameters:
shape (tuple of Expr) – The shape of the buffer.
dtype (str, optional) – The data type of the buffer.
name (str, optional) – The name of the buffer.
data (tir.Var, optional) – The data pointer in the buffer.
strides (array of Expr) – The stride of the buffer.
elem_offset (Expr, optional) – The beginning offset of the array to data. In terms of number of elements of dtype.
scope (str, optional) – The storage scope of the buffer, if not global. If scope equals empty string, it means it is global memory.
data_alignment (int, optional) – The alignment of data pointer in bytes. If -1 is passed, the alignment will be set to TVM’s internal default.
offset_factor (int, optional) – The factor of elem_offset field, when set, elem_offset is required to be multiple of offset_factor. If 0 is pssed, the alignment will be set to 1. if non-zero is passed, we will created a tir.Var for elem_offset if elem_offset is not None.
buffer_type (str, optional, {"", "auto_broadcast"}) – auto_broadcast buffer allows one to implement broadcast computation without considering whether dimension size equals to one. TVM maps buffer[i][j][k] -> buffer[i][0][k] if dimension j’s shape equals 1.
axis_separators (list of int, optional) – If passed, a list of separators between groups of axes, each of which is flattened to an output axis. For flat memory spaces, should either be None, or an empty list.
span (Optional[Span]) – The location of the decl_buffer creation in the source.
- Returns:
buffer – The created buffer
- Return type:
Example
Here’s an example of how broadcast buffer can be used to define a symbolic broadcast operation,
m0, m1, m2 = te.var("m0"), te.var("m1"), te.var("m2") n0, n1, n2 = te.var("n0"), te.var("n1"), te.var("n2") o0, o1, o2 = te.var("o0"), te.var("o1"), te.var("o2") A = te.placeholder((m0, m1, m2), name='A') B = te.placeholder((n0, n1, n2), name='B') C = te.compute((o0, o1, o2), lambda i, j, k: A[i, j, k] + B[i, j, k], name='C') Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name="Ab", buffer_type="auto_broadcast") Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name="Bb", buffer_type="auto_broadcast") s = te.create_schedule(C.op) fadd = tvm.build(s, [A, B, C], target='llvm', name='bcast_add', binds={A:Ab, B:Bb}) dev = tvm.cpu(0) a = tvm.nd.array(np.random.uniform(size=(2, 4, 3)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(2, 1, 3)).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((2, 4, 3), dtype=C.dtype), dev) fadd(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
Note
Buffer data structure reflects the DLTensor structure in dlpack. While DLTensor data structure is very general, it is usually helpful to create function that only handles specific case of data structure and make compiled function benefit from it.
If user pass strides and elem_offset is passed as None when constructing the function, then the function will be specialized for the DLTensor that is compact and aligned. If user pass a fully generic symbolic array to the strides, then the resulting function becomes fully generic.
- class tvm.tir.DataProducer
- class tvm.tir.Layout
Layout is composed of upper cases, lower cases and numbers, where upper case indicates a primal axis and the corresponding lower case with factor size indicates the subordinate axis. For example, NCHW16c can describe a 5-D tensor of [batch_size, channel, height, width, channel_block]. Here subordinate axis channel_block=16 is the factor size of the primal axis C (channel).
See also
layout
Declare a layout
- index_of(axis)
Get the index of an axis
- factor_of(axis)
Get the factor size of the subordinate axis.
- class tvm.tir.BijectiveLayout
Bijective mapping for two layouts (src-layout and dst-layout). It provides shape and index conversion between each other.
Do not construct directly, use
bijective_layout
instead. See the documentation ofbijective_layout
for more details.- Parameters:
See also
bijective_layout
Declare a layout
- forward_index(index)
Given the indices of the src-layout, infer the dst index.
- backward_index(index)
Given the indices of the dst-layout, infer the src index.
- forward_shape(shape)
Given the shape of the src-layout, infer the dst shape.
- tvm.tir.bijective_layout(src_layout: str | Layout, dst_layout: str | Layout) BijectiveLayout
Create a bijective layout mapping.
- Parameters:
- Returns:
bijective_layout – The created bijective layout
- Return type:
- tvm.tir.layout(layout_str: str, dtype: str = 'int32') Layout
Create a layout node from a string.
- Parameters:
layout_str (str) – A layout representation is composed of upper cases, lower cases and numbers, where upper case indicates a primal axis and the corresponding lower case with factor size indicates the subordinate axis. For example, NCHW16c can describe a 5-D tensor of [batch_size, channel, height, width, channel_block]. Here subordinate axis channel_block=16 is the factor size of the primal axis C (channel).
dtype (str) – The dtype of generated axes vars in the returned layout. It is required to be integer type.
- Returns:
layout – The created layout
- Return type:
- class tvm.tir.SizeVar(name: str, dtype: str | Type, span: Span | None = None)
- Symbolic variable to represent a tensor index size
which is greater or equal to zero.
- class tvm.tir.Reduce(combiner: CommReducer, src: List[PrimExpr], rdom: List[IterVar], condition: PrimExpr, value_index: int, init: List[PrimExpr] | None = None, span: Span | None = None)
Reduce node.
- Parameters:
combiner (CommReducer) – The combiner.
src (list of Expr) – The source expression.
condition (PrimExpr) – The reduce condition.
value_index (int) – The value index.
init (list of Expr) – The initial value for output. This can be an int, float or ProducerLoad
span (Optional[Span]) – The location of this expression in the source code.
- class tvm.tir.Select(condition: PrimExpr, true_value: PrimExpr, false_value: PrimExpr, span: Span | None = None)
Select node.
Note
Select may compute both true_value and false_value. Use
tvm.tir.if_then_else
instead if you want to get a conditional expression that only evaluates the correct branch.
- class tvm.tir.BufferLoad(buffer: Buffer, indices: List[PrimExpr], predicate: PrimExpr | None = None, span: Span | None = None)
Buffer load node.
- Parameters:
buffer (Buffer) – The buffer to be loaded.
indices (List[PrimExpr]) – The buffer indices to load values from.
span (Optional[Span]) – The location of this expression in the source code.
predicate (Optional[PrimExpr]) – A vector mask of boolean values indicating which lanes of a vector are to be loaded. The number lanes of the mask must be equal to the number of lanes being loaded.
- class tvm.tir.ProducerLoad(producer: DataProducer, indices: List[PrimExpr], span: Span | None = None)
Producer load node.
- Parameters:
producer (DataProducer) – The buffer to be loaded.
indices (List[PrimExpr]) – The buffer indices.
span (Optional[Span]) – The location of this expression in the source code.
- class tvm.tir.Ramp(base: PrimExpr, stride: PrimExpr, lanes: PrimExpr, span: Span | None = None)
Ramp node.
- class tvm.tir.Broadcast(value: PrimExpr, lanes: PrimExpr, span: Span | None = None)
Broadcast node.
- class tvm.tir.Shuffle(vectors: List[PrimExpr], indices: List[PrimExpr], span: Span | None = None)
Shuffle node.
- class tvm.tir.Call(dtype: str, op: Op | str, args: List[PrimExpr], span: Span | None = None)
tir.Call node.
- class tvm.tir.CallEffectKind
Possible kinds of tir.Call effects.
- class tvm.tir.IterVar(dom: Range, var: Var | str, iter_type: int, thread_tag: str = '', span: Span | None = None)
Represent iteration variable.
IterVar represents axis iterations in the computation.
- Parameters:
See also
te.thread_axis
Create thread axis IterVar.
te.reduce_axis
Create reduce axis IterVar.
- class tvm.tir.CommReducer(lhs: List[Var], rhs: List[Var], result: List[PrimExpr], identity_element: List[PrimExpr], span: Span | None = None)
Commutative reduce operator
- Parameters:
- class tvm.tir.Any(span: Span | None = None)
Any node.
- spanOptional[Span]
The location of this expression in the source code.
- class tvm.tir.Stmt
Base class of all the statements.
- class tvm.tir.LetStmt(var: Var, value: PrimExpr, body: Stmt, span: Span | None = None)
LetStmt node.
- class tvm.tir.AssertStmt(condition: PrimExpr, message: PrimExpr, body: Stmt, span: Span | None = None)
AssertStmt node.
- Parameters:
condition (PrimExpr) – The assert condition.
message (PrimExpr) – The error message.
body (tvm.tir.Stmt) – The body statement.
span (Optional[Span]) – The location of the stmt in the source code.
- class tvm.tir.ForKind(value)
The kind of the for loop.
Note
ForKind can change the control flow semantics of the loop and need to be considered in all TIR passes.
- class tvm.tir.For(loop_var: Var, min: PrimExpr, extent: PrimExpr, kind: ForKind, body: Stmt, thread_binding: IterVar | None = None, annotations: Mapping[str, Object] | None = None, span: Span | None = None)
For node.
- Parameters:
loop_var (tir.Var) – The loop variable.
min (PrimExpr) – The beginning value.
extent (PrimExpr) – The length of the loop.
kind (ForKind) – The type of the for.
body (Stmt) – The body statement.
thread_binding (Optional[tir.IterVar]) – The thread this loop binds to. Only valid if kind is ThreadBinding
annotations (Optional[Mapping[str, Object]]) – Additional annotation hints.
span (Optional[Span]) – The location of the stmt in the source code.
- class tvm.tir.BufferStore(buffer: Buffer, value: PrimExpr, indices: List[PrimExpr], predicate: PrimExpr | None = None, span: Span | None = None)
Buffer store node.
- Parameters:
buffer (Buffer) – The buffer.
value (PrimExpr) – The value we to be stored.
indices (List[PrimExpr]) – The indices location to be stored.
predicate (Optional[PrimExpr]) – A vector mask of boolean values indicating which lanes of a vector are to be stored. The number lanes of the mask must be equal to the number of lanes in value.
span (Optional[Span]) – The location of the stmt in the source code.
- class tvm.tir.BufferRealize(buffer: Buffer, bounds: List[Range], condition: PrimExpr, body: Stmt, span: Span | None = None)
Buffer realize node.
- class tvm.tir.ProducerStore(producer: DataProducer, value: PrimExpr, indices: List[PrimExpr], span: Span | None = None)
ProducerStore node.
- Parameters:
producer (DataProducer) – The data producer.
value (PrimExpr) – The value to be stored.
indices (list of Expr) – The index arguments of the store.
span (Optional[Span]) – The location of the stmt in the source code.
- class tvm.tir.Allocate(buffer_var: Var, dtype: str, extents: List[PrimExpr], condition: PrimExpr, body: Stmt, annotations: Mapping[str, Object] | None = None, span: Span | None = None)
Allocate node.
- Parameters:
buffer_var (tir.Var) – The buffer variable.
dtype (str) – The data type of the buffer.
extents (list of Expr) – The extents of the allocate
condition (PrimExpr) – The condition.
body (Stmt) – The body statement.
annotations (Optional[Mapping[str, Object]]) – Additional annotation hints
span (Optional[Span]) – The location of the stmt in the source code.
- class tvm.tir.AllocateConst(buffer_var: Var, dtype: str, extents: List[PrimExpr], data_or_idx: NDArray | int, body: Stmt, annotations: Mapping[str, Object] | None = None, span: Span | None = None)
Allocate constant node.
- Parameters:
buffer_var (tir.Var) – The buffer variable.
dtype (str) – The data type of the buffer.
extents (list of Expr) – The extents of the allocate
data_or_idx (Union[NDArray, int]) – If an NDArray, this is the const data associated with the constant. If an integer, this is the index into the “constants” attribute of the IRModule that contains the AllocateConst.
body (Stmt) – The body statement.
annotations (Optional[Mapping[str, Object]]) – Additional annotations about the allocation.
span (Optional[Span]) – The location of the stmt in the source code.
- class tvm.tir.AttrStmt(node: Object, attr_key: str, value: PrimExpr, body: Stmt, span: Span | None = None)
AttrStmt node.
- class tvm.tir.ProducerRealize(producer: DataProducer, bounds: List[Range], condition: PrimExpr, body: Stmt, storage_scope: str = '', span: Span | None = None)
ProducerRealize node.
- Parameters:
producer (DataProducer) – The data producer.
bounds (List[Range]) – The bound of realize
condition (PrimExpr) – The realize condition.
body (Stmt) – The realize body
storage_scope (str) – The storage scope associated with this realization
span (Optional[Span]) – The location of the stmt in the source code.
- class tvm.tir.IfThenElse(condition: PrimExpr, then_case: Stmt, else_case: Stmt | None, span: Span | None = None)
IfThenElse node.
- class tvm.tir.Prefetch(buffer: Buffer, bounds: List[Range], span: Span | None = None)
Prefetch node.
- class tvm.tir.MatchBufferRegion(buffer: Buffer, source: BufferRegion)
MatchBufferRegion node.
- Parameters:
buffer (Buffer) – The target buffer
source (BufferRegion) – The region of source buffer
- class tvm.tir.Block(iter_vars: List[IterVar], reads: List[BufferRegion], writes: List[BufferRegion], name_hint: str, body: Stmt, init: Stmt | None = None, alloc_buffers: List[Buffer] | None = None, match_buffers: List[MatchBufferRegion] | None = None, annotations: Mapping[str, Object] | None = None, span: Span | None = None)
Block node.
- Parameters:
iter_vars (List[IterVar]) – The block Variable.
reads (List[BufferRegion]) – The read buffer regions of the block.
writes (List[BufferRegion]) – The write buffer regions of the block.
name_hint (str) – the name_hint of the block.
body (Stmt) – The body of the block.
init (Optional[Stmt]) – The init block of the reduction block
alloc_buffers (Optional[list[Buffer]]) – The buffer allocations
match_buffers (Optional[List[MatchBufferRegion]]) – The subregion buffer match
annotations (Optional[Mapping[str, Object]]) – Additional annotation hints.
span (Optional[Span]) – The location of this block in the source code.
- class tvm.tir.BlockRealize(iter_values: List[PrimExpr], predicate: PrimExpr | bool, block: Block, span: Span | None = None)
BlockRealize node.
- class tvm.tir.PrimFunc(params, body, ret_type=None, buffer_map=None, attrs=None, span=None)
A function declaration expression.
- Parameters:
params (List[Union[tvm.tir.Var, tvm.tir.Buffer]]) – List of input parameters to the function.
body (tvm.tir.Stmt) – The body of the function.
ret_type (tvm.ir.Type) – The return type annotation of the function.
buffer_map (Map[tvm.tir.Var, tvm.tir.Buffer]) – The buffer binding map.
attrs (Optional[tvm.Attrs]) – Attributes of the function, can be None
span (Optional[Span]) – The location of this itervar in the source code.
- with_body(new_body, span=None)
Create a new PrimFunc with the same set signatures but a new body.
- specialize(param_map: Mapping[Var, PrimExpr | Buffer])
Specialize parameters of PrimFunc
- Parameters:
param_map (Mapping[tir.Var, Union[PrimExpr, Buffer]]) – The mapping from function params to the instance
Examples
We can define a Meta TIR function with symbolic shape:
@T.prim_func def mem_copy(a: T.handle, b: T.handle, m: T.int32, n: T.int32) -> None: A = T.match_buffer(a, (m, n), "float32") B = T.match_buffer(b, (m, n), "float32") for i, j in T.grid(m, n): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj]
Then we can make it specialized with given shapes or buffers.
a, _, m, n = mem_copy.params func = mem_copy.specialize({a: tir.decl_buffer((16, 16))}) # or func = mem_copy.specialize({n: 16, m: 16})
The specialized function:
@T.prim_func def mem_copy_16_16(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") B = T.match_buffer(b, (16, 16), "float32") for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj]
- Returns:
func – The new function with parameter specialized
- Return type:
- class tvm.tir.TensorIntrin(desc, impl)
A tensor intrinsic.
- Parameters:
- static register(name: str, desc: PrimFunc, impl: PrimFunc, override: bool = False)
Register a tensor intrinsic with its name.
- static get(name: str, allow_missing: bool = False) TensorIntrin | None
Look up a tensor intrinsic by its name.
- Parameters:
- Returns:
result – The TensorIntrin with the specified name, or None if not found.
- Return type:
Optional[TensorIntrin]
- class tvm.tir.IndexMap(initial_indices, final_indices, inverse_index_map)
A mapping from multi-dimensional indices to another set of multi-dimensional indices
- Parameters:
initial_indices (List[tir.Var]) – Variables representing the indices prior to remapping.
final_indices (List[PrimExpr]) – Expressions defining the indices after remapping.
inverse_index_map (Union[Callable, Optional[IndexMap]]) – The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user’s responsibility to ensure the correctness of the pre-defined inverse index map.
- static from_func(mapping_function: Callable, ndim: int | None = None, inverse_index_map: Callable | IndexMap | None = None, *, index_dtype: str = 'int64')
Create an index map from a function
- Parameters:
mapping_function (Callable) – The function to map from source indices to target indices. The function should accept tir.Var parameters and return a either a tir.PrimExpr, or a list of tir.PrimExpr. Returning a tir.PrimExpr is equivalent to returning a list of length 1 containing that tir.PrimExpr.
ndim (Optional[int]) – The dimensionality of the buffer to which this transformation should be applied. If mapping_function uses variadic argument *args, ndim must be specified. If mapping_function does not use variadic arguments, ndim is optional.
inverse_index_map (Union[Callable, Optional[IndexMap]]) – The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user’s responsibility to ensure the correctness of the pre-defined inverse index map.
- Returns:
index_map – Returns an IndexMap representing the mapping_function.
- Return type:
- static from_func_with_separators(mapping_function: Callable, ndim: int | None = None, inverse_index_map: Callable | IndexMap | None = None, *, index_dtype: str = 'int64')
Create an index map from a function
- Parameters:
mapping_function (Callable) – The function to map from source indices to target indices. The function should accept tir.Var parameters and return either a tir.PrimExpr or a list. Each element of the returned list should be either a tir.PrimExpr or the object IndexMap.AXIS_SEPARATOR. Returning a tir.PrimExpr is equivalent to returning a list of length 1 containing that tir.PrimExpr.
ndim (Optional[int]) – The dimensionality of the buffer to which this transformation should be applied. If mapping_function uses variadic argument *args, ndim must be specified. If mapping_function does not use variadic arguments, ndim is optional.
inverse_index_map (Union[Callable, Optional[IndexMap]]) – The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user’s responsibility to ensure the correctness of the pre-defined inverse index map.
index_dtype (str) – The default index dtype to use for input iters in the mapping function.
- Returns:
ret – Returns a tuple whose first element is an IndexMap representing the mapping_function, and whose second index is a list of indices at which IndexMap.AXIS_SEPARATOR occurred.
- Return type:
- map_ndarray(arr_src: NDArray) NDArray
Apply thie index map to transform the layout of the input NDArray
- Parameters:
arr_src (runtime.NDArray) – The NDArray to be transformed
- Returns:
arr_dst – The transformed NDArray
- Return type:
runtime.NDArray
- inverse(shape: List[Range | PrimExpr]) IndexMap
Return the inverse of the map
Throws an error if the function is not bijective.
- non_surjective_inverse(shape: List[Range | PrimExpr]) Tuple[IndexMap, PrimExpr]
Return the inverse of the map
Can be applied to transformations that introduce padding.
- Parameters:
shape (List[Union[Range,PrimExpr]]) – The region over which the inverse should be determined. Used for determining the predicate.
- Returns:
result – The inverse, and a predicate for which the inverse maps to a valid index in the input range.
- Return type:
Examples
index_map = IndexMap.from_func(lambda i: [i//4, i%4]) inverse_map, predicate = index_map.non_surjective_inverse([14]) assert inverse_map.is_equivalent_to(IndexMap.from_func(lambda j,k: [4*j + k]) print(predicate) # Prints "(axis0==3) && (axis2 >= 2)"
- tvm.tir.call_packed_lowered(*args, span=None)
Lowered version of call packed. The argument to packed function can be Expr or Buffer. The argument is the corresponding POD type when Expr is presented. When the argument is Buffer, the corresponding PackedFunc will recieve an TVMArrayHandle whose content is valid during the callback period. If the PackedFunc is a python callback, then the corresponding argument is NDArray.
- Parameters:
- Returns:
call – The call expression.
- Return type:
See also
te.extern
Create tensor with extern function call.
- tvm.tir.call_cpacked_lowered(*args, span=None)
Lowered version of call c-packed. Same as call_packed, except that the first argument is the function name (as in call_extern), and the last argument is the resource handle.
- Parameters:
- Returns:
call – The call expression.
- Return type:
See also
te.extern
Create tensor with extern function call.
- tvm.tir.call_tir(global_var: GlobalVar, *args)
Performs a call into another PrimFunc in the same IRModule
- Returns:
call – The call expression.
- Return type:
- tvm.tir.call_packed(*args, span=None)
Build expression by call an external packed function.
The argument to packed function can be Expr or Buffer. The argument is the corresponding POD type when Expr is presented.
When the argument is Buffer, the corresponding PackedFunc will receive an TVMArrayHandle whose content is valid during the callback period. If the PackedFunc is a python callback, then the corresponding argument is NDArray.
- Parameters:
- Returns:
call – The call expression.
- Return type:
See also
te.extern
Create tensor with extern function call.
- tvm.tir.call_cpacked(*args, span=None)
Build expression by call an external packed function.
Same as call_packed, except that the first argument is the function name (as in call_extern), and the last argument is the resource handle.
- Parameters:
- Returns:
call – The call expression.
- Return type:
See also
te.extern
Create tensor with extern function call.
- tvm.tir.call_intrin(dtype, func_name, *args, span=None)
Build expression by calling an intrinsic function.
Intrinsics can be overloaded with multiple data types via the intrinsic translation rule.
- tvm.tir.call_pure_extern(dtype, func_name, *args, span=None)
Build expression by calling a pure extern function.
- tvm.tir.call_extern(dtype, func_name, *args, span=None)
Build expression by calling a extern function.
- tvm.tir.call_llvm_intrin(dtype, name, *args, span=None)
Build expression by calling a llvm intrinsic function
- tvm.tir.call_llvm_pure_intrin(dtype, name, *args, span=None)
Build expression by calling a pure llvm intrinsic function
- tvm.tir.ret(val, span=None)
Create a tir return expression
- tvm.tir.all(*args, span=None)
- Create a new expression of the intersection of all conditions in the
arguments
- tvm.tir.any(*args, span=None)
Create a new experssion of the union of all conditions in the arguments
- tvm.tir.min_value(dtype, span=None)
minimum value of dtype
- tvm.tir.trace(args, trace_action='tvm.default_trace_action')
Trace tensor data at the runtime.
The trace function allows to trace specific tensor at the runtime. The tracing value should come as last argument. The trace action should be specified, by default tvm.default_trace_action is used.
- Parameters:
args (list of Expr or Buffers.) – Positional arguments.
trace_action (str.) – The name of the trace action.
- Returns:
call – The call expression.
- Return type:
See also
tvm.tir.call_packed
Creates packed function.
- tvm.tir.tvm_check_return(expected, return_unexpected, nested_call)
Return new on stack dtype[num] :param expected: The expected return code. :type expected: int :param return_unexpected: The unexpected return code. :type return_unexpected: int :param nested_call: The call expression to check return. :type nested_call: PrimExpr
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_stack_alloca(dtype_str, num)
Return new on stack dtype[num]
- tvm.tir.tvm_stack_make_shape(*args)
Allocate a shape tuple on stack, return the handle
- tvm.tir.tvm_stack_make_array(data, shape, strides, ndim, arr_dtype, elem_offset)
Allocate a NDArray(DLTensor) on stack, return the handle
- Parameters:
data (Expr) – The data of array.
shape (Expr) – The shape of array.
strides (Expr) – The strides of array.
ndim (Expr) – The dimensions of array.
arr_dtype (Expr) – The data type of array.
elem_offse (Expr) – The element offset of array.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_tuple(*value)
Create a tuple structure in value field of AttrStmt
- Parameters:
value (Expr) – The value in tuple.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_struct_get(arr, index, field, dtype)
Get struct field value in array
- tvm.tir.tvm_struct_set(arr, index, field, value)
Set value in struct field in array
- tvm.tir.address_of(buffer_load, span=None)
Returns the address of an element in the buffer
- Parameters:
buffer_load (BufferLoad) – The buffer load.
span (Optional[Span]) – The location of this operator in the source code.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.lookup_param(param_name, span=None)
Returns the param by name
- tvm.tir.assume(cond=None)
Provide a true statement that can be used for simplifications
- Parameters:
cond (Expr) – The constraint condition.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.undef()
Returns an initialized but arbitrary value
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_thread_allreduce(*freduce_args)
Perform allreduce inside threadblock.
- Parameters:
freduce_args (Expr) – The args.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.type_annotation(dtype)
Create a type annotation expression
- Parameters:
dtype (Expr) – The data type.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_access_ptr(ptype, data, offset, extent, rw_mask)
Get head access address with memory access pattern info
- tvm.tir.tvm_throw_last_error()
Throw TVMGetLastError()
- Returns:
ret – The return expression
- Return type:
- tvm.tir.tvm_load_matrix_sync(fragment, m, n, k, index, buffer_ptr, stride, layout)
TVM intrinsic for tensor core load operators
- Parameters:
fragment (tir.Var) – The wmma fragment.
m (UIntImm) – The shape of wmma fragment.
n (UIntImm) – The shape of wmma fragment.
k (UIntImm) – The shape of wmma fragment.
index (Expr) – The fragment index.
buffer_ptr (Expr) – The fragment buffer pointer.
stride (Expr) – The fragment stride.
layout (Literal["row_major", "column_major"]) – The fragment layout.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_store_matrix_sync(fragment, m, n, k, index, buffer_ptr, stride, layout)
TVM intrinsic for tensor core store operators
- Parameters:
fragment (tir.Var) – The wmma fragment.
m (UIntImm) – The shape of wmma fragment.
n (UIntImm) – The shape of wmma fragment.
k (UIntImm) – The shape of wmma fragment.
index (Expr) – The fragment index.
buffer_ptr (Expr) – The fragment buffer pointer.
stride (Expr) – The fragment stride.
layout (Literal["row_major", "column_major"]) – The fragment layout.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_mma_sync(fragment_d, index_d, fragment_a, index_a, fragment_b, index_b, fragment_c, index_c)
TVM intrinsic for tensor core mma_sync operators
- Parameters:
fragment_d (tir.Var) – The wmma fragment_d.
index_d (Expr) – The fragment_d index.
fragment_a (tir.Var) – The wmma fragment_a.
index_a (Expr) – The fragment_a index.
fragment_b (tir.Var) – The wmma fragment_b.
index_b (Expr) – The fragment_b index.
fragment_c (tir.Var) – The wmma fragment_c.
index_c (Expr) – The fragment_c index.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_bmma_sync(fragment_d, index_d, fragment_a, index_a, fragment_b, index_b, fragment_c, index_c)
TVM intrinsic for tensor core bmma_sync operators
- Parameters:
fragment_d (tir.Var) – The bwmma fragment_d.
index_d (Expr) – The fragment_d index.
fragment_a (tir.Var) – The bwmma fragment_a.
index_a (Expr) – The fragment_a index.
fragment_b (tir.Var) – The bwmma fragment_b.
index_b (Expr) – The fragment_b index.
fragment_c (tir.Var) – The bwmma fragment_c.
index_c (Expr) – The fragment_c index.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.tvm_fill_fragment(fragment, m, n, k, index, value)
TVM intrinsic for tensor core fill_fragment operators
- Parameters:
fragment (tir.Var) – The wmma fragment
m (UIntImm) – The shape of wmma fragment.
n (UIntImm) – The shape of wmma fragment.
k (UIntImm) – The shape of wmma fragment.
index (Expr) – The fragment index.
value (Expr) – The value to be filled in fragment.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.ptx_mma(dtype, shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, multiplicand_a, a_index, multiplicand_b, b_index, accumulator, c_index, saturate, operator=None)
TVM intrinsic for ptx tensor core mma instructions https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-for-mma
- Parameters:
dtype (str) – The data type of the result.
shape (str) – The shape of mma fragment.
A_layout (Literal["row", "col"]) – The layout of multiplicand fragment A.
B_layout (Literal["row", "col"]) – The layout of multiplicand fragment B.
A_dtype (str) – The data type of multiplicand fragment A.
B_dtype (str) – The data type of multiplicand fragment B.
C_dtype (str) – The data type of accumulator fragment C.
multiplicand_a (tir.Var) – The multiplicand fragment A variable.
a_index (Expr) – The index of multiplicand fragment A.
multiplicand_b (tir.Var) – The multiplicand fragment B variable.
b_index (Expr) – The index of multiplicand fragment A.
accumulator (tir.Var) – The accumulator fragment C variable.
c_index (Expr) – The index of accumulator fragment C.
saturate (bool) – The optional saturation at the output.
operator (Optional[Literal["xor", "and"]]) – The 1-bit operator.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.ptx_mma_sp(dtype, shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, multiplicand_a, a_index, multiplicand_b, b_index, accumulator, c_index, metadata, meta_index, sparse_selector, saturate)
TVM intrinsic for sparse tensor core ptx instructions https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-for-sparse-mma
- Parameters:
dtype (str) – The data type of the result.
shape (str) – The shape of mma fragment.
A_layout (Literal["row", "col"]) – The layout of multiplicand fragment A.
B_layout (Literal["row", "col"]) – The layout of multiplicand fragment B.
A_dtype (str) – The data type of multiplicand fragment A.
B_dtype (str) – The data type of multiplicand fragment B.
C_dtype (str) – The data type of multiplicand fragment C.
multiplicand_a (tir.Var) – The multiplicand fragment A variable.
a_index (Expr) – The index of multiplicand fragment A.
multiplicand_b (tir.Var) – The multiplicand fragment B variable.
b_index (Expr) – The index of multiplicand fragment B.
accumulator (tir.Var) – The accumulator fragment C variable.
c_index (Expr) – The index of accumulator fragment C.
metadata (Expr) – The metadata of operand.
meta_index (Expr) – The metadata index of operand.
sparse_selector (Expr) – The sparse selector indicating the thread that stores the metadata.
saturate (bool) – The optional saturation at the output.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.mma_store(dtype, m, n, dst_ptr, src_ptr, src_offset, dst_stride)
TVM intrinsic for storing the result of PTX MMA into a destination pointer
- Parameters:
dtype (str) – The data type of the result.
m (IntImm) – The shape of mma fragment.
n (IntImm) – The shape of mma fragment.
dst_ptr (tir.Var) – The destination pointer variable.
src_ptr (tir.Var) – The source pointer variable.
src_offset (Expr) – The source offset.
dst_stride (tir.Var) – The destination stride.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.mma_fill(dtype, local_size, local_ptr, offset)
TVM intrinsic for zero-initalizing an MMA accumulation registor
- tvm.tir.ptx_ldmatrix(dtype, trans, num, type, local_ptr, local_offset, smem_ptr, smem_offset)
TVM intrinsic for ptx load matrix from shared memory https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-ldmatrix
- Parameters:
dtype (str) – The data type of the result.
trans (bool) – The matrix is loaded in column-major format.
num (IntImm) – The number of matrices.
type (Literal[".b16"]) – The data type of the matrices.
local_ptr (tir.Var) – The local pointer variable.
local_offset (Expr) – The offset of local pointer.
smem_ptr (tir.Var) – The shared memory pointer variable.
smem_offset (Expr) – The offset of shared memort pointer.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.ptx_cp_async(dtype, shared_ptr, shared_offset, global_ptr, global_offset, bytes)
TVM intrinsic for ptx async copy from global to shared memory using cp.async https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async
- Parameters:
dtype (str) – The data type of the result.
shared_ptr (tir.Var) – The shared memory pointer variable.
shared_offset (Expr) – The offset of shared memory pointer.
global_ptr (tir.Var) – The global memory pointer variable.
global_offset (Expr) – The offset of global memory pointer.
bytes (int) – The data size to copy.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.ptx_cp_async_bulk(dtype, shared_ptr, shared_offset, global_ptr, global_offset, bytes, barrier_id)
TVM intrinsic for ptx async copy from global to shared memory using cp.async.bulk https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk
- Parameters:
dtype (str) – The data type of the result.
shared_ptr (tir.Var) – The shared memory pointer variable.
shared_offset (Expr) – The offset of shared memory pointer.
global_ptr (tir.Var) – The global memory pointer variable.
global_offset (Expr) – The offset of global memory pointer.
bytes (int) – The data size to copy.
barrier_id (int) – The ID of the barrier shared memory pointer.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.ptx_commit_group()
TVM intrinsic for ptx async copy commit https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-commit-group
- Returns:
call – The call expression.
- Return type:
- tvm.tir.ptx_wait_group(num)
TVM intrinsic for ptx async copy wait https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-wait-group
- tvm.tir.ptx_cp_async_barrier(barrier_id)
TVM intrinsic for ptx async copy barrier using cp.async.mbarrier.arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-cp-async-mbarrier-arrive
- tvm.tir.ptx_init_barrier_thread_count(barrier_id, thread_count)
TVM intrinsic for ptx barrier initialization of thread count using mbarrier.init https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-init
- tvm.tir.ptx_arrive_barrier(barrier_id)
TVM intrinsic for ptx barrier arrival using mbarrier.arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-arrive
- tvm.tir.ptx_arrive_barrier_expect_tx(barrier_id, byte_count)
TVM intrinsic for ptx barrier arrival with expect tx using mbarrier.arrive.expect_tx https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-expect-tx-operation
- tvm.tir.ptx_wait_barrier(barrier_id)
TVM intrinsic for ptx barrier wait using mbarrier.try_wait https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-test-wait-mbarrier-try-wait
- tvm.tir.create_barriers(barrier_count)
TVM intrinsic to create N barriers
- tvm.tir.make_filled_simdgroup_matrix(d: Var, index: PrimExpr, value: PrimExpr, col: int = 8, row: int = 8)
Create a filled SIMDGroup matrix
- tvm.tir.simdgroup_load(d: Var, index: PrimExpr, ptr: PrimExpr, stride: PrimExpr, col: int = 8, row: int = 8, transpose_matrix: bool = False)
Load data from device memory or threadgroup memory to simdgroup
- Parameters:
- Returns:
call – The call expression.
- Return type:
- tvm.tir.simdgroup_multiply_accumulate(d: Var, index_d: PrimExpr, a: Var, index_a: PrimExpr, b: Var, index_b: PrimExpr, c: Var, index_c: PrimExpr)
Multiply and accumulate two matrices in simdgroup i.e. d = a * b + c
- Parameters:
d (tir.Var) – The destination matrix.
index_d (PrimExpr) – The index of the destination matrix.
a (tir.Var) – The first matrix.
index_a (PrimExpr) – The index of the first matrix.
b (tir.Var) – The second matrix.
index_b (PrimExpr) – The index of the second matrix.
c (tir.Var) – The third matrix.
index_c (PrimExpr) – The index of the third matrix.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.simdgroup_store(d: PrimExpr, index: PrimExpr, ptr: PrimExpr, stride: PrimExpr, col: int = 8, row: int = 8, transpose_matrix: bool = False)
Store data from simdgroup to device memory or threadgroup memory
- Parameters:
- transpose_matrixbool
Whether to transpose the matrix.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.vectorlow(dtype, vec)
Get the low level half of the vector
- tvm.tir.vectorhigh(dtype, vec)
Get the high level half of the vector
- tvm.tir.vectorcombine(dtype, vec1, vec2)
Concat two vectors
- tvm.tir.exp(x)
Take exponential of input x.
- tvm.tir.exp2(x)
Calculate 2**x
- tvm.tir.exp10(x)
Calculate 10**x
- tvm.tir.log(x)
Take log of input x.
- tvm.tir.log2(x)
Take log2 of input x.
- tvm.tir.log10(x)
Take log10 of input x.
- tvm.tir.log1p(x)
Take log(x + 1) with respect to input x.
- tvm.tir.ldexp(x1, x2)
Returns x1 * (2 ** x2).
- tvm.tir.clz(x)
Count leading zero bits of an integer x.
- tvm.tir.sin(x)
Take sin of input x.
- tvm.tir.sinh(x)
Take sinh of input x.
- tvm.tir.asin(x)
Take asin of input x.
- tvm.tir.asinh(x)
Take asinh of input x.
- tvm.tir.cos(x)
Take cos of input x.
- tvm.tir.cosh(x)
Take cosh of input x.
- tvm.tir.acos(x)
Take acos of input x.
- tvm.tir.acosh(x)
Take acos of input x.
- tvm.tir.tan(x)
Take tan of input x.
- tvm.tir.tanh(x)
Take hyperbolic tanh of input x.
- tvm.tir.atan(x)
Take atan of input x.
- tvm.tir.atan2(x1, x2)
Take arctan2(x1, x2).
- tvm.tir.atanh(x)
Take atanh of input x.
- tvm.tir.bitwise_and(x, y, span=None)
Take bitwise and of two values
- tvm.tir.bitwise_not(x, span=None)
Take bitwise not of input value
- tvm.tir.bitwise_or(x, y, span=None)
Take bitwise or of two values
- tvm.tir.bitwise_xor(x, y, span=None)
Take bitwise xor of two values
- tvm.tir.erf(x)
Take gauss error function of the input x.
- tvm.tir.sigmoid(x)
Quick function to get sigmoid
- tvm.tir.sqrt(x)
Take square root of input x.
- tvm.tir.rsqrt(x)
Take reciprocal of square root of input x.
- tvm.tir.floor(x: PrimExprWithOp, span=None)
Take floor of float input x.
- tvm.tir.ceil(x, span=None)
Take ceil of float input x.
- tvm.tir.hypot(x1, x2)
Equivalent to sqrt(x1**2 + x2**2), element-wise.
- tvm.tir.trunc(x, span=None)
Get truncated value of the input.
The truncated value of the scalar x is the nearest integer i which is closer to zero than x is.
- tvm.tir.abs(x, span=None)
Get absolute value of the input element-wise.
- tvm.tir.round(x, span=None)
Round elements of the array to the nearest integer.
- tvm.tir.nextafter(x1, x2)
Return the next floating-point value after x1 towards x2.
- tvm.tir.nearbyint(x, span=None)
Round elements of the array to the nearest integer. This intrinsic uses llvm.nearbyint instead of llvm.round which is faster but will results different from te.round. Notably nearbyint rounds according to the rounding mode, whereas te.round (llvm.round) ignores that. For differences between the two see: https://en.cppreference.com/w/cpp/numeric/math/round https://en.cppreference.com/w/cpp/numeric/math/nearbyint
- tvm.tir.power(x, y, span=None)
x power y
- tvm.tir.pow(x, y, span=None)
x power y
- tvm.tir.popcount(x)
Count the number of set bits in input x.
- tvm.tir.fmod(x, y)
Return the remainder of x divided by y with the same sign as x.
- tvm.tir.if_then_else(cond, t, f, span=None)
Conditional selection expression.
- Parameters:
- Returns:
result – The result of conditional expression.
- Return type:
Note
Unlike Select, if_then_else will not execute the branch that does not satisfy the condition. You can use it to guard against out of bound access. Unlike Select, if_then_else cannot be vectorized if some lanes in the vector have different conditions.
- tvm.tir.likely(cond, span=None)
Mark condition as likely.
- tvm.tir.isnan(x, span=None)
Check if input value is Nan.
- tvm.tir.isnullptr(x, span=None)
Check if input value is nullptr.
- tvm.tir.isfinite(x, span=None)
Check if input value is finite.
- tvm.tir.isinf(x, span=None)
Check if input value is infinite.
- tvm.tir.copysign(x1, x2)
Change the sign of x1 to that of x2, element-wise.
- tvm.tir.div(a, b, span=None)
Compute a / b as in C/C++ semantics.
- Parameters:
- Returns:
res – The result expression.
- Return type:
Note
When operands are integers, returns truncdiv(a, b, span).
- tvm.tir.indexdiv(a, b, span=None)
Compute floor(a / b) where a and b are non-negative.
- Parameters:
- Returns:
res – The result expression.
- Return type:
Note
Use this function to split non-negative indices. This function may take advantage of operands’ non-negativeness.
- tvm.tir.indexmod(a, b, span=None)
Compute the remainder of indexdiv. a and b are non-negative.
- Parameters:
- Returns:
res – The result expression.
- Return type:
Note
Use this function to split non-negative indices. This function may take advantage of operands’ non-negativeness.
- tvm.tir.truncdiv(a, b, span=None)
Compute the truncdiv of two expressions.
- Parameters:
- Returns:
res – The result expression.
- Return type:
Note
This is the default integer division behavior in C.
- tvm.tir.truncmod(a, b, span=None)
Compute the truncmod of two expressions.
- Parameters:
- Returns:
res – The result expression.
- Return type:
Note
This is the default integer division behavior in C.
- tvm.tir.floordiv(a, b, span=None)
Compute the floordiv of two expressions.
- tvm.tir.floormod(a, b, span=None)
Compute the floormod of two expressions.
- tvm.tir.ceildiv(lhs, rhs, span=None)
Generic ceildiv operator.
- tvm.tir.comm_reducer(fcombine, fidentity, name='reduce')
Create a commutative reducer for reduction.
- Parameters:
fcombine (function(Expr -> Expr -> Expr)) – A binary function which takes two Expr as input to return a Expr.
fidentity (function(str -> Expr)) – A function which takes a type string as input to return a const Expr.
- Returns:
reducer – A function which creates a reduce expression over axis. There are two ways to use it:
accept (expr, axis, where) to produce an Reduce Expr on specified axis;
simply use it with multiple Exprs.
- Return type:
function
Example
n = te.var("n") m = te.var("m") mysum = te.comm_reducer(lambda x, y: x+y, lambda t: tvm.tir.const(0, dtype=t), name="mysum") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), name="k") B = te.compute((n,), lambda i: mysum(A[i, k], axis=k), name="B")
- tvm.tir.min(expr, axis, where=None, init=None, *args)
Create a min expression over axis.
- Parameters:
- Returns:
value – The result value.
- Return type:
Example
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this min reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.min represents tvm.te.min or tvm.tir.min. B = te.compute((m,), lambda i: tvm.min(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: min_res = tvm.min(m, n)
- tvm.tir.max(expr, axis, where=None, init=None, *args)
Create a max expression over axis.
- Parameters:
- Returns:
value – The result value.
- Return type:
Example
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this max reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.max represents tvm.te.max or tvm.tir.max. B = te.compute((m,), lambda i: tvm.max(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: max_res = tvm.max(m, n)
- tvm.tir.sum(expr, axis, where=None, init=None, *args)
Create a sum expression over axis.
- Parameters:
- Returns:
value – The result value.
- Return type:
Example
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this sum reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.sum represents tvm.te.sum or tvm.tir.sum. B = te.compute((m,), lambda i: tvm.sum(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: sum_res = tvm.sum(m, n)
- tvm.tir.q_multiply_shift(x, y, q, s)
Execute a multiplication between two Q-numbers x and y followed by a right shift s. The mathematical expression is:
out = round(x*y*2^-s)
More about Q-numbers here: https://en.wikipedia.org/wiki/Q_(number_format) The rounding rule is to the nearest value, rounding half up (i.e., round(x.1) = x and round (x.5) = x+1)
- tvm.tir.q_multiply_shift_per_axis(x: PrimExpr, y: PrimExpr, ls: PrimExpr, rs: PrimExpr, q: IntImm, is_lshift_required: IntImm, is_rshift_required: IntImm)
Execute a multiplication between two Q-numbers x and y
- Parameters:
x (PrimExpr) – First Q-number.
y (PrimExpr) – Second Q-number.
ls (PrimExpr) – Integer left shift.
rs (PrimExpr) – Integer right shift.
q (IntImm) – Number of fractional bits in x and y. Needs to be > 0.
is_lshift_required (IntImm) – Whether we need to do left shift or not.
is_rshift_required (IntImm) – Whether we need to do right shift or not.
- Returns:
z – The result.
- Return type:
- tvm.tir.shift_left(x, y, span=None)
Return the result of x left shifted by y bits.
- tvm.tir.shift_right(x, y, span=None)
Return the result of x right shifted by y bits.
- tvm.tir.TVMBackendAllocWorkspace(device_type, device_id, nbytes, dtype_code_hint, dtype_bits_hint)
Backend function to allocate temporal workspace
- Parameters:
device_type (int) – The device type which the space will be allocated.
device_id (int) – The device id which the space will be allocated.
nbytes (int) – The size of the space requested.
dtype_code_hint (int) – The type code of the array elements. Only used in certain backends such as OpenGL.
dtype_bits_hint (int) – The type bits of the array elements. Only used in certain backends such as OpenGL.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.TVMBackendFreeWorkspace(device_type, device_id, ptr)
Backend function to free temporal workspace.
- tvm.tir.start_profile_intrinsic(id)
Start profile intrinsic. :param id: The intrinsic id. :type id: int
- Returns:
call – The call expression.
- Return type:
- tvm.tir.end_profile_intrinsic(id)
End profile intrinsic. :param id: The intrinsic id. :type id: int
- Returns:
call – The call expression.
- Return type:
- tvm.tir.vscale()
Get the target’s vscale value. It will be lowered to llvm.vscale intrinsic (https://llvm.org/docs/LangRef.html#llvm-vscale-intrinsic) :returns: call – tir.Call to the vscale intrinsic :rtype: PrimExpr
- tvm.tir.get_active_lane_mask(dtype, base, limit)
Calculate a predicate mask given an upper bound (limit) and a current value (base).
It will be lowered to the llvm.get.active.lane.mask intrinsic. (https://llvm.org/docs/LangRef.html#llvm-get-active-lane-mask-intrinsics)
- tvm.tir.get_vscale_expr(dtype: str | DataType, min_size: int = 128) PrimExpr
Create a datatype dependent scalable expression.
- tvm.tir.dp4a(vec1, vec2, acc=0)
Dot product of two int8x4 vectors and add an optional accumulator
- Parameters:
vec1 (int8x4) – The input vector.
vec2 (int8x4) – The input vector.
acc (int32) – The accumulator.
- Returns:
call – The call expression.
- Return type:
- tvm.tir.add(lhs, rhs, span=None)
Generic add operator.
- tvm.tir.subtract(lhs, rhs, span=None)
Generic subtract operator.
- tvm.tir.multiply(lhs, rhs, span=None)
Generic multiply operator.
- class tvm.tir.BlockDependenceInfo(mod: IRModule | PrimFunc)
An object that helps build and query block level dependences using the 2 core objects BlockScope and StmtSRef
The data structures exposed are: 1) sref2scope: Mapping from the srefs to its corresponding BlockScope 2) stmt2ref: Mapping from blocks to corresponding StmtSRefs
Note that this object does not store SRefs to loops as the purpose is only to expose block level dependences. This provides the advantage that the scope block (parent block) for a given block sref can be directly accessed as sref->parent
- get_block_scope(block_sref: StmtSRef) BlockScope
Get the BlockScope correpsonding to the block sref