Source code for tvm_ffi.cpp.extension

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""Build and load C++/CUDA sources into a tvm_ffi Module using Ninja."""

from __future__ import annotations

import functools
import hashlib
import os
import shutil
import subprocess
import sys
from collections.abc import Mapping, Sequence
from contextlib import nullcontext
from pathlib import Path
from typing import Any

from tvm_ffi.libinfo import find_dlpack_include_path, find_include_path, find_libtvm_ffi
from tvm_ffi.module import Module, load_module
from tvm_ffi.utils import FileLock

IS_WINDOWS = sys.platform == "win32"


def _hash_sources(
    cpp_source: str | None,
    cuda_source: str | None,
    cpp_files: Sequence[str] | None,
    cuda_files: Sequence[str] | None,
    functions: Sequence[str] | Mapping[str, str],
    extra_cflags: Sequence[str],
    extra_cuda_cflags: Sequence[str],
    extra_ldflags: Sequence[str],
    extra_include_paths: Sequence[str],
    embed_cubin: Mapping[str, bytes] | None = None,
) -> str:
    """Generate a unique hash for the given sources and functions."""
    m = hashlib.sha256()

    def _hash(obj: Any) -> None:
        if obj is None:
            m.update(b"None")
        elif isinstance(obj, str):
            m.update(b"str")
            m.update(obj.encode("utf-8"))
        elif isinstance(obj, bytes):
            m.update(b"bytes")
            m.update(obj)
        elif isinstance(obj, Mapping):
            m.update(b"Mapping")
            for key in sorted(obj.keys()):
                item = obj[key]
                _hash(key)
                _hash(item)
        elif isinstance(obj, Sequence):
            m.update(b"Sequence")
            for item in obj:
                _hash(item)
        else:
            raise ValueError(f"Unsupported type: {type(obj)}")

    _hash(
        (
            cpp_source,
            cuda_source,
            sorted(cpp_files) if cpp_files is not None else None,
            sorted(cuda_files) if cuda_files is not None else None,
            functions,
            extra_cflags,
            extra_cuda_cflags,
            extra_ldflags,
            extra_include_paths,
            embed_cubin,
        )
    )

    return m.hexdigest()[:16]


def _maybe_write(path: str, content: str) -> None:
    """Write content to path if it does not already exist with the same content."""
    p = Path(path)
    if p.exists():
        with p.open() as f:
            existing_content = f.read()
        if existing_content == content:
            return
    with p.open("w") as f:
        f.write(content)


@functools.lru_cache
def _find_cuda_home() -> str:
    """Find the CUDA install path."""
    # Guess #1
    cuda_home = os.environ.get("CUDA_HOME") or os.environ.get("CUDA_PATH")
    if cuda_home is None:
        # Guess #2
        nvcc_path = shutil.which("nvcc")
        if nvcc_path is not None:
            cuda_home = str(Path(nvcc_path).parent.parent)
        else:
            # Guess #3
            if IS_WINDOWS:
                cuda_root = Path("C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA")
                cuda_homes = list(cuda_root.glob("v*.*"))
                if len(cuda_homes) == 0:
                    raise RuntimeError(
                        "Could not find CUDA installation. Please set CUDA_HOME environment variable."
                    )
                cuda_home = str(cuda_homes[0])
            else:
                cuda_home = "/usr/local/cuda"
            if not Path(cuda_home).exists():
                raise RuntimeError(
                    "Could not find CUDA installation. Please set CUDA_HOME environment variable."
                )
    return cuda_home


def _get_cuda_target() -> str:
    """Get the CUDA target architecture flag."""
    if "TVM_FFI_CUDA_ARCH_LIST" in os.environ:
        arch_list = os.environ["TVM_FFI_CUDA_ARCH_LIST"].split()  # e.g., "8.9 9.0a"
        flags = []
        for arch in arch_list:
            if len(arch.split(".")) != 2:
                raise ValueError(f"Invalid CUDA architecture: {arch}")
            major, minor = arch.split(".")
            flags.append(f"-gencode=arch=compute_{major}{minor},code=sm_{major}{minor}")
        return " ".join(flags)
    else:
        try:
            status = subprocess.run(
                args=["nvidia-smi", "--query-gpu=compute_cap", "--format=csv,noheader"],
                capture_output=True,
                check=True,
            )
            compute_cap = status.stdout.decode("utf-8").strip().split("\n")[0]
            major, minor = compute_cap.split(".")
            return f"-gencode=arch=compute_{major}{minor},code=sm_{major}{minor}"
        except Exception:
            # fallback to a reasonable default
            return "-gencode=arch=compute_70,code=sm_70"


def _run_command_in_dev_prompt(
    args: list[str],
    cwd: str | os.PathLike[str],
    capture_output: bool,
) -> subprocess.CompletedProcess:
    """Locates the Developer Command Prompt and runs a command within its environment."""
    try:
        # Path to vswhere.exe
        vswhere_path = str(
            Path(os.environ.get("ProgramFiles(x86)", "C:\\Program Files (x86)"))
            / "Microsoft Visual Studio"
            / "Installer"
            / "vswhere.exe"
        )

        if not Path(vswhere_path).exists():
            raise FileNotFoundError("vswhere.exe not found.")

        # Find the Visual Studio installation path
        vs_install_path = subprocess.run(
            [
                vswhere_path,
                "-latest",
                "-prerelease",
                "-products",
                "*",
                "-property",
                "installationPath",
            ],
            capture_output=True,
            text=True,
            check=True,
        ).stdout.strip()

        if not vs_install_path:
            raise FileNotFoundError("No Visual Studio installation found.")

        # Construct the path to the VsDevCmd.bat file
        vsdevcmd_path = str(Path(vs_install_path) / "Common7" / "Tools" / "VsDevCmd.bat")

        if not Path(vsdevcmd_path).exists():
            raise FileNotFoundError(f"VsDevCmd.bat not found at: {vsdevcmd_path}")

        # Use cmd.exe to run the batch file and then your command.
        # The /k flag keeps the command prompt open after the batch file runs.
        # The "&" symbol chains the commands.
        cmd_command = '"{vsdevcmd_path}" -arch=x64 & {command}'.format(
            vsdevcmd_path=vsdevcmd_path, command=" ".join(args)
        )

        # Execute the command in a new shell
        return subprocess.run(
            cmd_command, check=False, cwd=cwd, capture_output=capture_output, shell=True
        )

    except (FileNotFoundError, subprocess.CalledProcessError) as e:
        raise RuntimeError(
            "Failed to run the following command in MSVC developer environment: {}".format(
                " ".join(args)
            )
        ) from e


def _generate_ninja_build(  # noqa: PLR0915, PLR0912
    name: str,
    with_cuda: bool,
    extra_cflags: Sequence[str],
    extra_cuda_cflags: Sequence[str],
    extra_ldflags: Sequence[str],
    extra_include_paths: Sequence[str],
    cpp_files: Sequence[str],
    cuda_files: Sequence[str],
    embed_cubin: Mapping[str, bytes] | None = None,
) -> str:
    """Generate the content of build.ninja for building the module."""
    default_include_paths = [find_include_path(), find_dlpack_include_path()]
    tvm_ffi_lib = Path(find_libtvm_ffi())
    tvm_ffi_lib_path = str(tvm_ffi_lib.parent)
    tvm_ffi_lib_name = tvm_ffi_lib.stem
    if IS_WINDOWS:
        default_cflags = [
            "/std:c++17",
            "/MD",
            "/wd4819",
            "/wd4251",
            "/wd4244",
            "/wd4267",
            "/wd4275",
            "/wd4018",
            "/wd4190",
            "/wd4624",
            "/wd4067",
            "/wd4068",
            "/EHsc",
        ]
        default_cuda_cflags = ["-Xcompiler", "/std:c++17", "/O2"]
        default_ldflags = [
            "/DLL",
            f"/LIBPATH:{tvm_ffi_lib_path}",
            f"{tvm_ffi_lib_name}.lib",
        ]
    else:
        default_cflags = ["-std=c++17", "-fPIC", "-O2"]
        default_cuda_cflags = ["-Xcompiler", "-fPIC", "-std=c++17", "-O2"]
        default_ldflags = ["-shared", f"-L{tvm_ffi_lib_path}", "-ltvm_ffi"]

        if with_cuda:
            # determine the compute capability of the current GPU
            default_cuda_cflags += [_get_cuda_target()]
            default_ldflags += [
                "-L{}".format(str(Path(_find_cuda_home()) / "lib64")),
                "-lcudart",  # cuda runtime library
            ]

    cflags = default_cflags + [flag.strip() for flag in extra_cflags]
    cuda_cflags = default_cuda_cflags + [flag.strip() for flag in extra_cuda_cflags]
    ldflags = default_ldflags + [flag.strip() for flag in extra_ldflags]
    include_paths = default_include_paths + [
        str(Path(path).resolve()) for path in extra_include_paths
    ]

    # append include paths
    for path in include_paths:
        cflags.append("-I{}".format(path.replace(":", "$:")))
        cuda_cflags.append("-I{}".format(path.replace(":", "$:")))

    # flags
    ninja: list[str] = []
    ninja.append("ninja_required_version = 1.3")
    ninja.append("cxx = {}".format(os.environ.get("CXX", "cl" if IS_WINDOWS else "c++")))
    ninja.append("cflags = {}".format(" ".join(cflags)))
    if with_cuda:
        ninja.append("nvcc = {}".format(str(Path(_find_cuda_home()) / "bin" / "nvcc")))
        ninja.append("cuda_cflags = {}".format(" ".join(cuda_cflags)))
    ninja.append("ldflags = {}".format(" ".join(ldflags)))

    # rules
    ninja.append("")
    ninja.append("rule compile")
    if IS_WINDOWS:
        ninja.append("  command = $cxx /showIncludes $cflags -c $in /Fo$out")
        ninja.append("  deps = msvc")
    else:
        ninja.append("  depfile = $out.d")
        ninja.append("  deps = gcc")
        ninja.append("  command = $cxx -MMD -MF $out.d $cflags -c $in -o $out")
    ninja.append("")

    if with_cuda:
        ninja.append("rule compile_cuda")
        ninja.append("  depfile = $out.d")
        ninja.append("  deps = gcc")
        ninja.append(
            "  command = $nvcc --generate-dependencies-with-compile --dependency-output $out.d $cuda_cflags -c $in -o $out"
        )
        ninja.append("")

    # Add rules for object merging and cubin embedding (Unix only)
    if not IS_WINDOWS:
        if embed_cubin:
            ninja.append("rule merge_objects")
            ninja.append("  command = ld -r -o $out $in")
            ninja.append("")

            ninja.append("rule embed_cubin")
            ninja.append(
                f"  command = {sys.executable} -m tvm_ffi.utils.embed_cubin --output-obj $out --input-obj $in --cubin $cubin --name $name"
            )
            ninja.append("")

    ninja.append("rule link")
    if IS_WINDOWS:
        ninja.append("  command = $cxx $in /link $ldflags /out:$out")
    else:
        ninja.append("  command = $cxx $in $ldflags -o $out")
    ninja.append("")

    # build targets
    obj_files: list[str] = []
    for i, cpp_path in enumerate(sorted(cpp_files)):
        obj_name = f"cpp_{i}.o"
        ninja.append("build {}: compile {}".format(obj_name, cpp_path.replace(":", "$:")))
        obj_files.append(obj_name)

    for i, cuda_path in enumerate(sorted(cuda_files)):
        obj_name = f"cuda_{i}.o"
        ninja.append("build {}: compile_cuda {}".format(obj_name, cuda_path.replace(":", "$:")))
        obj_files.append(obj_name)

    # Use appropriate extension based on platform
    ext = ".dll" if IS_WINDOWS else ".so"

    # For Unix systems with embed_cubin, use a 3-step process:
    # 1. Merge all object files into a unified object file
    # 2. Embed each cubin into the unified object file (chain them)
    # 3. Link the final object file into a shared library
    if not IS_WINDOWS and embed_cubin:
        # Step 1: Merge object files into unified.o
        unified_obj = "unified.o"
        obj_files_str = " ".join(obj_files)
        ninja.append(f"build {unified_obj}: merge_objects {obj_files_str}")
        ninja.append("")

        # Step 2: Chain embed_cubin operations for each cubin
        current_obj = unified_obj
        for cubin_name in sorted(embed_cubin.keys()):
            # Create next object file name
            next_obj = f"unified_with_{cubin_name}.o"
            cubin_file = f"{cubin_name}.cubin"

            # Add ninja build rule
            ninja.append(f"build {next_obj}: embed_cubin {current_obj}")
            ninja.append(f"  cubin = {cubin_file}")
            ninja.append(f"  name = {cubin_name}")
            ninja.append("")

            current_obj = next_obj

        # Step 3: Link the final object file
        ninja.append(f"build {name}{ext}: link {current_obj}")
        ninja.append("")
    else:
        # Original behavior: directly link object files (for Windows or no cubin embedding)
        link_files_str = " ".join(obj_files)
        ninja.append(f"build {name}{ext}: link {link_files_str}")
        ninja.append("")

    # default target
    ninja.append(f"default {name}{ext}")
    ninja.append("")
    return "\n".join(ninja)


def build_ninja(build_dir: str) -> None:
    """Build the module in the given build directory using ninja."""
    command = ["ninja", "-v"]
    num_workers = os.environ.get("MAX_JOBS", None)
    if num_workers is not None:
        command += ["-j", num_workers]
    if IS_WINDOWS:
        status = _run_command_in_dev_prompt(args=command, cwd=build_dir, capture_output=True)
    else:
        status = subprocess.run(check=False, args=command, cwd=build_dir, capture_output=True)
    if status.returncode != 0:
        msg = [f"ninja exited with status {status.returncode}"]
        encoding = "oem" if IS_WINDOWS else "utf-8"
        if status.stdout:
            msg.append(f"stdout:\n{status.stdout.decode(encoding)}")
        if status.stderr:
            msg.append(f"stderr:\n{status.stderr.decode(encoding)}")

        raise RuntimeError("\n".join(msg))


# Translation table for escaping C++ string literals
_CPP_ESCAPE_TABLE = str.maketrans(
    {
        "\\": "\\\\",
        '"': '\\"',
        "\n": "\\n",
        "\r": "\\r",
        "\t": "\\t",
    }
)


def _escape_cpp_string_literal(s: str) -> str:
    """Escape special characters for C++ string literals."""
    return s.translate(_CPP_ESCAPE_TABLE)


def _decorate_with_tvm_ffi(source: str, functions: Mapping[str, str]) -> str:
    """Decorate the given source code with TVM FFI export macros."""
    sources = [
        "#include <tvm/ffi/container/tensor.h>",
        "#include <tvm/ffi/dtype.h>",
        "#include <tvm/ffi/error.h>",
        "#include <tvm/ffi/extra/c_env_api.h>",
        "#include <tvm/ffi/function.h>",
        "",
        source,
    ]

    for func_name, func_doc in functions.items():
        sources.append(f"TVM_FFI_DLL_EXPORT_TYPED_FUNC({func_name}, {func_name});")

        if func_doc:
            # Escape the docstring for C++ string literal
            escaped_doc = _escape_cpp_string_literal(func_doc)
            sources.append(f'TVM_FFI_DLL_EXPORT_TYPED_FUNC_DOC({func_name}, "{escaped_doc}");')

    sources.append("")

    return "\n".join(sources)


def _str_seq2list(seq: Sequence[str] | str | None) -> list[str]:
    if seq is None:
        return []
    elif isinstance(seq, str):
        return [seq]
    else:
        return list(seq)


def _build_impl(
    name: str,
    cpp_files: Sequence[str] | str | None,
    cuda_files: Sequence[str] | str | None,
    extra_cflags: Sequence[str] | None,
    extra_cuda_cflags: Sequence[str] | None,
    extra_ldflags: Sequence[str] | None,
    extra_include_paths: Sequence[str] | None,
    build_directory: str | None,
    need_lock: bool = True,
    embed_cubin: Mapping[str, bytes] | None = None,
) -> str:
    """Real implementation of build function."""
    # need to resolve the path to make it unique
    cpp_path_list = [str(Path(p).resolve()) for p in _str_seq2list(cpp_files)]
    cuda_path_list = [str(Path(p).resolve()) for p in _str_seq2list(cuda_files)]
    with_cpp = bool(cpp_path_list)
    with_cuda = bool(cuda_path_list)
    assert with_cpp or with_cuda, "Either cpp_files or cuda_files must be provided."

    extra_ldflags_list = list(extra_ldflags) if extra_ldflags is not None else []
    extra_cflags_list = list(extra_cflags) if extra_cflags is not None else []
    extra_cuda_cflags_list = list(extra_cuda_cflags) if extra_cuda_cflags is not None else []
    extra_include_paths_list = list(extra_include_paths) if extra_include_paths is not None else []

    build_dir: Path
    if build_directory is None:
        cache_dir = os.environ.get("TVM_FFI_CACHE_DIR", str(Path("~/.cache/tvm-ffi").expanduser()))
        source_hash: str = _hash_sources(
            None,
            None,
            cpp_path_list,
            cuda_path_list,
            {},
            extra_cflags_list,
            extra_cuda_cflags_list,
            extra_ldflags_list,
            extra_include_paths_list,
            embed_cubin,
        )
        build_dir = Path(cache_dir).expanduser() / f"{name}_{source_hash}"
    else:
        build_dir = Path(build_directory).resolve()
    build_dir.mkdir(parents=True, exist_ok=True)

    # CUBIN embedding is only supported on Unix systems
    if embed_cubin and IS_WINDOWS:
        raise NotImplementedError("CUBIN embedding is not yet supported on Windows")

    # Write CUBIN files to build directory if needed (for Unix systems)
    # These will be embedded using the embed_cubin utility during ninja build
    if embed_cubin:
        for cubin_name, cubin_bytes in embed_cubin.items():
            cubin_path = build_dir / f"{cubin_name}.cubin"
            cubin_path.write_bytes(cubin_bytes)

    # generate build.ninja
    ninja_source = _generate_ninja_build(
        name=name,
        with_cuda=with_cuda,
        extra_cflags=extra_cflags_list,
        extra_cuda_cflags=extra_cuda_cflags_list,
        extra_ldflags=extra_ldflags_list,
        extra_include_paths=extra_include_paths_list,
        cpp_files=cpp_path_list,
        cuda_files=cuda_path_list,
        embed_cubin=embed_cubin,
    )

    # may not hold lock when build_directory is specified, prevent deadlock
    with FileLock(str(build_dir / "lock")) if need_lock else nullcontext():
        # write build.ninja if it does not already exist
        _maybe_write(str(build_dir / "build.ninja"), ninja_source)
        # build the module
        build_ninja(str(build_dir))
        # Use appropriate extension based on platform
        ext = ".dll" if IS_WINDOWS else ".so"
        return str((build_dir / f"{name}{ext}").resolve())


[docs] def build_inline( name: str, *, cpp_sources: Sequence[str] | str | None = None, cuda_sources: Sequence[str] | str | None = None, functions: Mapping[str, str] | Sequence[str] | str | None = None, extra_cflags: Sequence[str] | None = None, extra_cuda_cflags: Sequence[str] | None = None, extra_ldflags: Sequence[str] | None = None, extra_include_paths: Sequence[str] | None = None, build_directory: str | None = None, embed_cubin: Mapping[str, bytes] | None = None, ) -> str: """Compile and build a C++/CUDA module from inline source code. This function compiles the given C++ and/or CUDA source code into a shared library. Both ``cpp_sources`` and ``cuda_sources`` are compiled to an object file, and then linked together into a shared library. It's possible to only provide cpp_sources or cuda_sources. The path to the compiled shared library is returned. The ``functions`` parameter is used to specify which functions in the source code should be exported to the tvm ffi module. It can be a mapping, a sequence, or a single string. When a mapping is given, the keys are the names of the exported functions, and the values are docstrings for the functions. When a sequence of string is given, they are the function names needed to be exported, and the docstrings are set to empty strings. A single function name can also be given as a string, indicating that only one function is to be exported. Extra compiler and linker flags can be provided via the ``extra_cflags``, ``extra_cuda_cflags``, and ``extra_ldflags`` parameters. The default flags are generally sufficient for most use cases, but you may need to provide additional flags for your specific use case. The include dir of tvm ffi and dlpack are used by default for the compiler to find the headers. Thus, you can include any header from tvm ffi in your source code. You can also provide additional include paths via the ``extra_include_paths`` parameter and include custom headers in your source code. The compiled shared library is cached in a cache directory to avoid recompilation. The `build_directory` parameter is provided to specify the build directory. If not specified, a default tvm ffi cache directory will be used. The default cache directory can be specified via the `TVM_FFI_CACHE_DIR` environment variable. If not specified, the default cache directory is ``~/.cache/tvm-ffi``. Parameters ---------- name The name of the tvm ffi module. cpp_sources The C++ source code. It can be a list of sources or a single source. cuda_sources The CUDA source code. It can be a list of sources or a single source. functions The functions in cpp_sources or cuda_source that will be exported to the tvm ffi module. When a mapping is given, the keys are the names of the exported functions, and the values are docstrings for the functions (use an empty string to skip documentation for specific functions). When a sequence or a single string is given, they are the functions needed to be exported, and the docstrings are set to empty strings. A single function name can also be given as a string. When cpp_sources is given, the functions must be declared (not necessarily defined) in the cpp_sources. When cpp_sources is not given, the functions must be defined in the cuda_sources. If not specified, no function will be exported. extra_cflags The extra compiler flags for C++ compilation. The default flags are: - On Linux/macOS: ['-std=c++17', '-fPIC', '-O2'] - On Windows: ['/std:c++17', '/O2'] extra_cuda_cflags The extra compiler flags for CUDA compilation. extra_ldflags The extra linker flags. The default flags are: - On Linux/macOS: ['-shared'] - On Windows: ['/DLL'] extra_include_paths The extra include paths. build_directory The build directory. If not specified, a default tvm ffi cache directory will be used. By default, the cache directory is ``~/.cache/tvm-ffi``. You can also set the ``TVM_FFI_CACHE_DIR`` environment variable to specify the cache directory. embed_cubin: Mapping[str, bytes], optional A mapping from CUBIN module names to CUBIN binary data. TVM-FFI provides a macro `TVM_FFI_EMBED_CUBIN(name)` to embed CUBIN data into the compiled shared library. The keys should match the names used in `TVM_FFI_EMBED_CUBIN(name)` calls in the C++ source code. The values are the CUBIN binary data bytes. The embedded CUBIN kernels can be accessed by the macro `TVM_FFI_EMBED_CUBIN_GET_KERNEL(name, kernel_name)` defined in the `tvm/ffi/extra/cuda/cubin_launcher.h` header. See the `examples/cubin_launcher` directory for examples how to use cubin launcher to launch CUBIN kernels in TVM-FFI. Returns ------- lib_path: str The path to the built shared library. Example ------- .. code-block:: python import torch from tvm_ffi import Module import tvm_ffi.cpp # define the cpp source code cpp_source = ''' void add_one_cpu(tvm::ffi::TensorView x, tvm::ffi::TensorView y) { // implementation of a library function TVM_FFI_ICHECK(x.ndim() == 1) << "x must be a 1D tensor"; DLDataType f32_dtype{kDLFloat, 32, 1}; TVM_FFI_ICHECK(x.dtype() == f32_dtype) << "x must be a float tensor"; TVM_FFI_ICHECK(y.ndim() == 1) << "y must be a 1D tensor"; TVM_FFI_ICHECK(y.dtype() == f32_dtype) << "y must be a float tensor"; TVM_FFI_ICHECK(x.size(0) == y.size(0)) << "x and y must have the same shape"; for (int i = 0; i < x.size(0); ++i) { static_cast<float*>(y.data_ptr())[i] = static_cast<float*>(x.data_ptr())[i] + 1; } } ''' # compile the cpp source code and load the module lib_path: str = tvm_ffi.cpp.build_inline( name="hello", cpp_sources=cpp_source, functions="add_one_cpu", ) # load the module mod: Module = tvm_ffi.load_module(lib_path) # use the function from the loaded module to perform x = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float32) y = torch.empty_like(x) mod.add_one_cpu(x, y) torch.testing.assert_close(x + 1, y) """ cpp_source_list = _str_seq2list(cpp_sources) cpp_source = "\n".join(cpp_source_list) with_cpp = bool(cpp_source_list) del cpp_source_list cuda_source_list = _str_seq2list(cuda_sources) cuda_source = "\n".join(cuda_source_list) with_cuda = bool(cuda_source_list) del cuda_source_list extra_ldflags_list = list(extra_ldflags) if extra_ldflags is not None else [] extra_cflags_list = list(extra_cflags) if extra_cflags is not None else [] extra_cuda_cflags_list = list(extra_cuda_cflags) if extra_cuda_cflags is not None else [] extra_include_paths_list = list(extra_include_paths) if extra_include_paths is not None else [] # add function registration code to sources if functions is None: function_map: dict[str, str] = {} elif isinstance(functions, str): function_map = {functions: ""} elif isinstance(functions, Mapping): function_map = dict(functions) else: function_map = {name: "" for name in functions} if with_cpp: cpp_source = _decorate_with_tvm_ffi(cpp_source, function_map) cuda_source = _decorate_with_tvm_ffi(cuda_source, {}) else: cpp_source = _decorate_with_tvm_ffi(cpp_source, {}) cuda_source = _decorate_with_tvm_ffi(cuda_source, function_map) # determine the cache dir for the built module build_dir: Path if build_directory is None: cache_dir = os.environ.get("TVM_FFI_CACHE_DIR", str(Path("~/.cache/tvm-ffi").expanduser())) source_hash: str = _hash_sources( cpp_source, cuda_source, None, None, function_map, extra_cflags_list, extra_cuda_cflags_list, extra_ldflags_list, extra_include_paths_list, embed_cubin, ) build_dir = Path(cache_dir).expanduser() / f"{name}_{source_hash}" else: build_dir = Path(build_directory).resolve() build_dir.mkdir(parents=True, exist_ok=True) cpp_file = str((build_dir / "main.cpp").resolve()) cuda_file = str((build_dir / "cuda.cu").resolve()) with FileLock(str(build_dir / "lock")): # write source files if they do not already exist _maybe_write(cpp_file, cpp_source) if with_cuda: _maybe_write(cuda_file, cuda_source) return _build_impl( name=name, cpp_files=[cpp_file] if with_cpp else [], cuda_files=[cuda_file] if with_cuda else [], extra_cflags=extra_cflags_list, extra_cuda_cflags=extra_cuda_cflags_list, extra_ldflags=extra_ldflags_list, extra_include_paths=extra_include_paths_list, build_directory=str(build_dir), need_lock=False, # already hold the lock embed_cubin=embed_cubin, )
[docs] def load_inline( # noqa: PLR0913 name: str, *, cpp_sources: Sequence[str] | str | None = None, cuda_sources: Sequence[str] | str | None = None, functions: Mapping[str, str] | Sequence[str] | str | None = None, extra_cflags: Sequence[str] | None = None, extra_cuda_cflags: Sequence[str] | None = None, extra_ldflags: Sequence[str] | None = None, extra_include_paths: Sequence[str] | None = None, build_directory: str | None = None, embed_cubin: Mapping[str, bytes] | None = None, keep_module_alive: bool = True, ) -> Module: """Compile, build and load a C++/CUDA module from inline source code. This function compiles the given C++ and/or CUDA source code into a shared library. Both ``cpp_sources`` and ``cuda_sources`` are compiled to an object file, and then linked together into a shared library. It's possible to only provide cpp_sources or cuda_sources. The ``functions`` parameter is used to specify which functions in the source code should be exported to the tvm ffi module. It can be a mapping, a sequence, or a single string. When a mapping is given, the keys are the names of the exported functions, and the values are docstrings for the functions. When a sequence of string is given, they are the function names needed to be exported, and the docstrings are set to empty strings. A single function name can also be given as a string, indicating that only one function is to be exported. Extra compiler and linker flags can be provided via the ``extra_cflags``, ``extra_cuda_cflags``, and ``extra_ldflags`` parameters. The default flags are generally sufficient for most use cases, but you may need to provide additional flags for your specific use case. The include dir of tvm ffi and dlpack are used by default for the compiler to find the headers. Thus, you can include any header from tvm ffi in your source code. You can also provide additional include paths via the ``extra_include_paths`` parameter and include custom headers in your source code. The compiled shared library is cached in a cache directory to avoid recompilation. The `build_directory` parameter is provided to specify the build directory. If not specified, a default tvm ffi cache directory will be used. The default cache directory can be specified via the `TVM_FFI_CACHE_DIR` environment variable. If not specified, the default cache directory is ``~/.cache/tvm-ffi``. Parameters ---------- name The name of the tvm ffi module. cpp_sources The C++ source code. It can be a list of sources or a single source. cuda_sources The CUDA source code. It can be a list of sources or a single source. functions The functions in cpp_sources or cuda_source that will be exported to the tvm ffi module. When a mapping is given, the keys are the names of the exported functions, and the values are docstrings for the functions (use an empty string to skip documentation for specific functions). When a sequence or a single string is given, they are the functions needed to be exported, and the docstrings are set to empty strings. A single function name can also be given as a string. When cpp_sources is given, the functions must be declared (not necessarily defined) in the cpp_sources. When cpp_sources is not given, the functions must be defined in the cuda_sources. If not specified, no function will be exported. extra_cflags The extra compiler flags for C++ compilation. The default flags are: - On Linux/macOS: ['-std=c++17', '-fPIC', '-O2'] - On Windows: ['/std:c++17', '/O2'] extra_cuda_cflags The extra compiler flags for CUDA compilation. extra_ldflags The extra linker flags. The default flags are: - On Linux/macOS: ['-shared'] - On Windows: ['/DLL'] extra_include_paths The extra include paths. build_directory The build directory. If not specified, a default tvm ffi cache directory will be used. By default, the cache directory is ``~/.cache/tvm-ffi``. You can also set the ``TVM_FFI_CACHE_DIR`` environment variable to specify the cache directory. embed_cubin A mapping from CUBIN module names to CUBIN binary data. When provided, the CUBIN data will be embedded into the compiled shared library using objcopy, making it accessible via the TVM_FFI_EMBED_CUBIN macro. The keys should match the names used in TVM_FFI_EMBED_CUBIN calls in the C++ source code. keep_module_alive Whether to keep the module alive. If True, the module will be kept alive for the duration of the program until libtvm_ffi.so is unloaded. Returns ------- mod: Module The loaded tvm ffi module. See Also -------- :py:func:`tvm_ffi.load_module` Example ------- .. code-block:: python import torch from tvm_ffi import Module import tvm_ffi.cpp # define the cpp source code cpp_source = ''' void add_one_cpu(tvm::ffi::TensorView x, tvm::ffi::TensorView y) { // implementation of a library function TVM_FFI_ICHECK(x.ndim() == 1) << "x must be a 1D tensor"; DLDataType f32_dtype{kDLFloat, 32, 1}; TVM_FFI_ICHECK(x.dtype() == f32_dtype) << "x must be a float tensor"; TVM_FFI_ICHECK(y.ndim() == 1) << "y must be a 1D tensor"; TVM_FFI_ICHECK(y.dtype() == f32_dtype) << "y must be a float tensor"; TVM_FFI_ICHECK(x.size(0) == y.size(0)) << "x and y must have the same shape"; for (int i = 0; i < x.size(0); ++i) { static_cast<float*>(y.data_ptr())[i] = static_cast<float*>(x.data_ptr())[i] + 1; } } ''' # compile the cpp source code and load the module mod: Module = tvm_ffi.cpp.load_inline( name="hello", cpp_sources=cpp_source, functions="add_one_cpu", ) # use the function from the loaded module to perform x = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float32) y = torch.empty_like(x) mod.add_one_cpu(x, y) torch.testing.assert_close(x + 1, y) """ return load_module( build_inline( name=name, cpp_sources=cpp_sources, cuda_sources=cuda_sources, functions=functions, extra_cflags=extra_cflags, extra_cuda_cflags=extra_cuda_cflags, extra_ldflags=extra_ldflags, extra_include_paths=extra_include_paths, build_directory=build_directory, embed_cubin=embed_cubin, ), keep_module_alive=keep_module_alive, )
[docs] def build( name: str, *, cpp_files: Sequence[str] | str | None = None, cuda_files: Sequence[str] | str | None = None, extra_cflags: Sequence[str] | None = None, extra_cuda_cflags: Sequence[str] | None = None, extra_ldflags: Sequence[str] | None = None, extra_include_paths: Sequence[str] | None = None, build_directory: str | None = None, ) -> str: """Compile and build a C++/CUDA module from source files. This function compiles the given C++ and/or CUDA source files into a shared library. Both ``cpp_files`` and ``cuda_files`` are compiled to object files, and then linked together into a shared library. It's possible to only provide cpp_files or cuda_files. The path to the compiled shared library is returned. Note that this function does not automatically export functions to the tvm ffi module. You need to manually use the TVM FFI export macros (e.g., ``TVM_FFI_DLL_EXPORT_TYPED_FUNC``) in your source files to export functions. This gives you more control over which functions are exported and how they are exported. Extra compiler and linker flags can be provided via the ``extra_cflags``, ``extra_cuda_cflags``, and ``extra_ldflags`` parameters. The default flags are generally sufficient for most use cases, but you may need to provide additional flags for your specific use case. The include dir of tvm ffi and dlpack are used by default for the compiler to find the headers. Thus, you can include any header from tvm ffi in your source files. You can also provide additional include paths via the ``extra_include_paths`` parameter and include custom headers in your source code. The compiled shared library is cached in a cache directory to avoid recompilation. The `build_directory` parameter is provided to specify the build directory. If not specified, a default tvm ffi cache directory will be used. The default cache directory can be specified via the `TVM_FFI_CACHE_DIR` environment variable. If not specified, the default cache directory is ``~/.cache/tvm-ffi``. Parameters ---------- name The name of the tvm ffi module. cpp_files The C++ source files to compile. It can be a list of file paths or a single file path. Both absolute and relative paths are supported. cuda_files The CUDA source files to compile. It can be a list of file paths or a single file path. Both absolute and relative paths are supported. extra_cflags The extra compiler flags for C++ compilation. The default flags are: - On Linux/macOS: ['-std=c++17', '-fPIC', '-O2'] - On Windows: ['/std:c++17', '/MD', '/O2'] extra_cuda_cflags The extra compiler flags for CUDA compilation. The default flags are: - ['-Xcompiler', '-fPIC', '-std=c++17', '-O2'] (Linux/macOS) - ['-Xcompiler', '/std:c++17', '/O2'] (Windows) extra_ldflags The extra linker flags. The default flags are: - On Linux/macOS: ['-shared', '-L<tvm_ffi_lib_path>', '-ltvm_ffi'] - On Windows: ['/DLL', '/LIBPATH:<tvm_ffi_lib_path>', '<tvm_ffi_lib_name>.lib'] extra_include_paths The extra include paths for header files. Both absolute and relative paths are supported. build_directory The build directory. If not specified, a default tvm ffi cache directory will be used. By default, the cache directory is ``~/.cache/tvm-ffi``. You can also set the ``TVM_FFI_CACHE_DIR`` environment variable to specify the cache directory. Returns ------- lib_path: str The path to the built shared library. Example ------- .. code-block:: python import torch from tvm_ffi import Module import tvm_ffi.cpp # Assume we have a C++ source file "my_ops.cpp" with the following content: # ```cpp # #include <tvm/ffi/container/tensor.h> # #include <tvm/ffi/dtype.h> # #include <tvm/ffi/error.h> # #include <tvm/ffi/extra/c_env_api.h> # #include <tvm/ffi/function.h> # # void add_one_cpu(tvm::ffi::TensorView x, tvm::ffi::TensorView y) { # TVM_FFI_ICHECK(x.ndim() == 1) << "x must be a 1D tensor"; # DLDataType f32_dtype{kDLFloat, 32, 1}; # TVM_FFI_ICHECK(x.dtype() == f32_dtype) << "x must be a float tensor"; # TVM_FFI_ICHECK(y.ndim() == 1) << "y must be a 1D tensor"; # TVM_FFI_ICHECK(y.dtype() == f32_dtype) << "y must be a float tensor"; # TVM_FFI_ICHECK(x.size(0) == y.size(0)) << "x and y must have the same shape"; # for (int i = 0; i < x.size(0); ++i) { # static_cast<float*>(y.data_ptr())[i] = static_cast<float*>(x.data_ptr())[i] + 1; # } # } # # TVM_FFI_DLL_EXPORT_TYPED_FUNC(add_one_cpu, add_one_cpu); # ``` # compile the cpp source file and get the library path lib_path: str = tvm_ffi.cpp.build( name="my_ops", cpp_files="my_ops.cpp", ) # load the module mod: Module = tvm_ffi.load_module(lib_path) # use the function from the loaded module x = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float32) y = torch.empty_like(x) mod.add_one_cpu(x, y) torch.testing.assert_close(x + 1, y) """ return _build_impl( name=name, cpp_files=cpp_files, cuda_files=cuda_files, extra_cflags=extra_cflags, extra_cuda_cflags=extra_cuda_cflags, extra_ldflags=extra_ldflags, extra_include_paths=extra_include_paths, build_directory=build_directory, need_lock=True, )
[docs] def load( name: str, *, cpp_files: Sequence[str] | str | None = None, cuda_files: Sequence[str] | str | None = None, extra_cflags: Sequence[str] | None = None, extra_cuda_cflags: Sequence[str] | None = None, extra_ldflags: Sequence[str] | None = None, extra_include_paths: Sequence[str] | None = None, build_directory: str | None = None, keep_module_alive: bool = True, ) -> Module: """Compile, build and load a C++/CUDA module from source files. This function compiles the given C++ and/or CUDA source files into a shared library and loads it as a tvm ffi module. Both ``cpp_files`` and ``cuda_files`` are compiled to object files, and then linked together into a shared library. It's possible to only provide cpp_files or cuda_files. Note that this function does not automatically export functions to the tvm ffi module. You need to manually use the TVM FFI export macros (e.g., :c:macro:`TVM_FFI_DLL_EXPORT_TYPED_FUNC`) in your source files to export functions. This gives you more control over which functions are exported and how they are exported. Extra compiler and linker flags can be provided via the ``extra_cflags``, ``extra_cuda_cflags``, and ``extra_ldflags`` parameters. The default flags are generally sufficient for most use cases, but you may need to provide additional flags for your specific use case. The include dir of tvm ffi and dlpack are used by default for the compiler to find the headers. Thus, you can include any header from tvm ffi in your source files. You can also provide additional include paths via the ``extra_include_paths`` parameter and include custom headers in your source code. The compiled shared library is cached in a cache directory to avoid recompilation. The `build_directory` parameter is provided to specify the build directory. If not specified, a default tvm ffi cache directory will be used. The default cache directory can be specified via the `TVM_FFI_CACHE_DIR` environment variable. If not specified, the default cache directory is ``~/.cache/tvm-ffi``. Parameters ---------- name The name of the tvm ffi module. cpp_files The C++ source files to compile. It can be a list of file paths or a single file path. Both absolute and relative paths are supported. cuda_files The CUDA source files to compile. It can be a list of file paths or a single file path. Both absolute and relative paths are supported. extra_cflags The extra compiler flags for C++ compilation. The default flags are: - On Linux/macOS: ['-std=c++17', '-fPIC', '-O2'] - On Windows: ['/std:c++17', '/MD', '/O2'] extra_cuda_cflags The extra compiler flags for CUDA compilation. The default flags are: - ['-Xcompiler', '-fPIC', '-std=c++17', '-O2'] (Linux/macOS) - ['-Xcompiler', '/std:c++17', '/O2'] (Windows) extra_ldflags The extra linker flags. The default flags are: - On Linux/macOS: ['-shared', '-L<tvm_ffi_lib_path>', '-ltvm_ffi'] - On Windows: ['/DLL', '/LIBPATH:<tvm_ffi_lib_path>', '<tvm_ffi_lib_name>.lib'] extra_include_paths The extra include paths for header files. Both absolute and relative paths are supported. build_directory The build directory. If not specified, a default tvm ffi cache directory will be used. By default, the cache directory is ``~/.cache/tvm-ffi``. You can also set the ``TVM_FFI_CACHE_DIR`` environment variable to specify the cache directory. keep_module_alive Whether to keep the module alive. If True, the module will be kept alive for the duration of the program until libtvm_ffi.so is unloaded. Returns ------- mod: Module The loaded tvm ffi module. See Also -------- :py:func:`tvm_ffi.load_module` Example ------- .. code-block:: python import torch from tvm_ffi import Module import tvm_ffi.cpp # Assume we have a C++ source file "my_ops.cpp" with the following content: # ```cpp # #include <tvm/ffi/container/tensor.h> # #include <tvm/ffi/dtype.h> # #include <tvm/ffi/error.h> # #include <tvm/ffi/extra/c_env_api.h> # #include <tvm/ffi/function.h> # # void add_one_cpu(tvm::ffi::TensorView x, tvm::ffi::TensorView y) { # TVM_FFI_ICHECK(x.ndim() == 1) << "x must be a 1D tensor"; # DLDataType f32_dtype{kDLFloat, 32, 1}; # TVM_FFI_ICHECK(x.dtype() == f32_dtype) << "x must be a float tensor"; # TVM_FFI_ICHECK(y.ndim() == 1) << "y must be a 1D tensor"; # TVM_FFI_ICHECK(y.dtype() == f32_dtype) << "y must be a float tensor"; # TVM_FFI_ICHECK(x.size(0) == y.size(0)) << "x and y must have the same shape"; # for (int i = 0; i < x.size(0); ++i) { # static_cast<float*>(y.data_ptr())[i] = static_cast<float*>(x.data_ptr())[i] + 1; # } # } # # TVM_FFI_DLL_EXPORT_TYPED_FUNC(add_one_cpu, add_one_cpu); # ``` # compile the cpp source file and load the module mod: Module = tvm_ffi.cpp.load( name="my_ops", cpp_files="my_ops.cpp", ) # use the function from the loaded module x = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float32) y = torch.empty_like(x) mod.add_one_cpu(x, y) torch.testing.assert_close(x + 1, y) """ return load_module( build( name=name, cpp_files=cpp_files, cuda_files=cuda_files, extra_cflags=extra_cflags, extra_cuda_cflags=extra_cuda_cflags, extra_ldflags=extra_ldflags, extra_include_paths=extra_include_paths, build_directory=build_directory, ), keep_module_alive=keep_module_alive, )