Program Listing for File memory.h#
↰ Return to documentation for file (tvm/ffi/memory.h
)
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef TVM_FFI_MEMORY_H_
#define TVM_FFI_MEMORY_H_
#include <tvm/ffi/object.h>
#include <cstddef>
#include <cstdlib>
#include <type_traits>
#include <utility>
namespace tvm {
namespace ffi {
typedef void (*FObjectDeleter)(void* obj, int flags);
// Detail implementations after this
//
// The current design allows swapping the
// allocator pattern when necessary.
//
// Possible future allocator optimizations:
// - Arena allocator that gives ownership of memory to arena (deleter = nullptr)
// - Thread-local object pools: one pool per size and alignment requirement.
// - Can specialize by type of object to give the specific allocator to each object.
namespace details {
template <size_t align>
TVM_FFI_INLINE void* AlignedAlloc(size_t size) {
static_assert(align != 0 && (align & (align - 1)) == 0, "align must be a power of 2");
#ifdef _MSC_VER
// MSVC have to use _aligned_malloc
if (void* ptr = _aligned_malloc(size, align)) {
return ptr;
}
throw std::bad_alloc();
#else
if constexpr (align <= alignof(std::max_align_t)) {
// malloc guarantees alignment of std::max_align_t
if (void* ptr = std::malloc(size)) {
return ptr;
}
throw std::bad_alloc();
} else {
void* ptr;
// for other alignments, use posix_memalign
if (posix_memalign(&ptr, align, size) != 0) {
throw std::bad_alloc();
}
return ptr;
}
#endif
}
TVM_FFI_INLINE void AlignedFree(void* data) {
#ifdef _MSC_VER
// MSVC have to use _aligned_free
_aligned_free(data);
#else
std::free(data);
#endif
}
template <typename Derived>
class ObjAllocatorBase {
public:
template <typename T, typename... Args>
ObjectPtr<T> make_object(Args&&... args) {
using Handler = typename Derived::template Handler<T>;
static_assert(std::is_base_of<Object, T>::value, "make can only be used to create Object");
T* ptr = Handler::New(static_cast<Derived*>(this), std::forward<Args>(args)...);
TVMFFIObject* ffi_ptr = details::ObjectUnsafe::GetHeader(ptr);
ffi_ptr->combined_ref_count = kCombinedRefCountBothOne;
ffi_ptr->type_index = T::RuntimeTypeIndex();
ffi_ptr->__padding = 0;
ffi_ptr->deleter = Handler::Deleter();
return details::ObjectUnsafe::ObjectPtrFromOwned<T>(ptr);
}
template <typename ArrayType, typename ElemType, typename... Args>
ObjectPtr<ArrayType> make_inplace_array(size_t num_elems, Args&&... args) {
using Handler = typename Derived::template ArrayHandler<ArrayType, ElemType>;
static_assert(std::is_base_of<Object, ArrayType>::value,
"make_inplace_array can only be used to create Object");
ArrayType* ptr =
Handler::New(static_cast<Derived*>(this), num_elems, std::forward<Args>(args)...);
TVMFFIObject* ffi_ptr = details::ObjectUnsafe::GetHeader(ptr);
ffi_ptr->combined_ref_count = kCombinedRefCountBothOne;
ffi_ptr->type_index = ArrayType::RuntimeTypeIndex();
ffi_ptr->__padding = 0;
ffi_ptr->deleter = Handler::Deleter();
return details::ObjectUnsafe::ObjectPtrFromOwned<ArrayType>(ptr);
}
};
// Simple allocator that uses new/delete.
class SimpleObjAllocator : public ObjAllocatorBase<SimpleObjAllocator> {
public:
template <typename T>
class Handler {
public:
template <typename... Args>
static T* New(SimpleObjAllocator*, Args&&... args) {
// NOTE: the first argument is not needed for SimpleObjAllocator
// It is reserved for special allocators that needs to recycle
// the object to itself (e.g. in the case of object pool).
//
// In the case of an object pool, an allocator needs to create
// a special chunk memory that hides reference to the allocator
// and call allocator's release function in the deleter.
// NOTE2: Use inplace new to allocate
// This is used to get rid of warning when deleting a virtual
// class with non-virtual destructor.
// We are fine here as we captured the right deleter during construction.
// This is also the right way to get storage type for an object pool.
void* data = AlignedAlloc<alignof(T)>(sizeof(T));
new (data) T(std::forward<Args>(args)...);
return reinterpret_cast<T*>(data);
}
static FObjectDeleter Deleter() { return Deleter_; }
private:
static void Deleter_(void* objptr, int flags) {
T* tptr =
details::ObjectUnsafe::RawObjectPtrFromUnowned<T>(static_cast<TVMFFIObject*>(objptr));
if (flags & kTVMFFIObjectDeleterFlagBitMaskStrong) {
// It is important to do tptr->T::~T(),
// so that we explicitly call the specific destructor
// instead of tptr->~T(), which could mean the intention
// call a virtual destructor(which may not be available and is not required).
tptr->T::~T();
}
if (flags & kTVMFFIObjectDeleterFlagBitMaskWeak) {
AlignedFree(static_cast<void*>(tptr));
}
}
};
// Array handler that uses new/delete.
template <typename ArrayType, typename ElemType>
class ArrayHandler {
public:
template <typename... Args>
static ArrayType* New(SimpleObjAllocator*, size_t num_elems, Args&&... args) {
// NOTE: the first argument is not needed for ArrayObjAllocator
// It is reserved for special allocators that needs to recycle
// the object to itself (e.g. in the case of object pool).
//
// In the case of an object pool, an allocator needs to create
// a special chunk memory that hides reference to the allocator
// and call allocator's release function in the deleter.
// NOTE2: Use inplace new to allocate
// This is used to get rid of warning when deleting a virtual
// class with non-virtual destructor.
// We are fine here as we captured the right deleter during construction.
// This is also the right way to get storage type for an object pool.
// for now only support elements that aligns with array header.
static_assert(
alignof(ArrayType) % alignof(ElemType) == 0 && sizeof(ArrayType) % alignof(ElemType) == 0,
"element alignment constraint");
size_t size = sizeof(ArrayType) + sizeof(ElemType) * num_elems;
// round up to the nearest multiple of align
constexpr size_t align = alignof(ArrayType);
// C++ standard always guarantees that alignof operator returns a power of 2
size_t aligned_size = (size + (align - 1)) & ~(align - 1);
void* data = AlignedAlloc<align>(aligned_size);
new (data) ArrayType(std::forward<Args>(args)...);
return reinterpret_cast<ArrayType*>(data);
}
static FObjectDeleter Deleter() { return Deleter_; }
private:
static void Deleter_(void* objptr, int flags) {
ArrayType* tptr = details::ObjectUnsafe::RawObjectPtrFromUnowned<ArrayType>(
static_cast<TVMFFIObject*>(objptr));
if (flags & kTVMFFIObjectDeleterFlagBitMaskStrong) {
// It is important to do tptr->ArrayType::~ArrayType(),
// so that we explicitly call the specific destructor
// instead of tptr->~ArrayType(), which could mean the intention
// call a virtual destructor(which may not be available and is not required).
tptr->ArrayType::~ArrayType();
}
if (flags & kTVMFFIObjectDeleterFlagBitMaskWeak) {
AlignedFree(static_cast<void*>(tptr));
}
}
};
};
} // namespace details
template <typename T, typename... Args>
inline ObjectPtr<T> make_object(Args&&... args) {
return details::SimpleObjAllocator().make_object<T>(std::forward<Args>(args)...);
}
template <typename ArrayType, typename ElemType, typename... Args>
inline ObjectPtr<ArrayType> make_inplace_array_object(size_t num_elems, Args&&... args) {
return details::SimpleObjAllocator().make_inplace_array<ArrayType, ElemType>(
num_elems, std::forward<Args>(args)...);
}
} // namespace ffi
} // namespace tvm
#endif // TVM_FFI_MEMORY_H_